mirror of
https://github.com/mii443/tokenizers.git
synced 2025-08-22 16:25:30 +00:00
Doc - Update quicktour for Node
This commit is contained in:
@ -1,4 +1,4 @@
|
||||
const globRequire = require;
|
||||
var globRequire = require;
|
||||
|
||||
describe("pipelineExample", () => {
|
||||
// This is a hack to let us require using path similar to what the user has to use
|
||||
@ -82,7 +82,7 @@ describe("pipelineExample", () => {
|
||||
|
||||
// START bert_train_tokenizer
|
||||
let { wordPieceTrainer } = require("tokenizers/bindings/trainers");
|
||||
let { promisify } = require("utils");
|
||||
let { promisify } = require("util");
|
||||
|
||||
let trainer = wordPieceTrainer({
|
||||
vocabSize: 30522,
|
||||
@ -107,7 +107,7 @@ describe("pipelineExample", () => {
|
||||
let { Tokenizer } = require("tokenizers/bindings/tokenizer");
|
||||
let { WordPiece } = require("tokenizers/bindings/models");
|
||||
|
||||
let bertTokenizer = Tokenizer(WordPiece.empty());
|
||||
let bertTokenizer = new Tokenizer(WordPiece.empty());
|
||||
// END bert_setup_tokenizer
|
||||
// START bert_setup_normalizer
|
||||
let { sequenceNormalizer, lowercaseNormalizer, nfdNormalizer, stripAccentsNormalizer }
|
||||
@ -118,12 +118,12 @@ describe("pipelineExample", () => {
|
||||
]))
|
||||
// END bert_setup_normalizer
|
||||
// START bert_setup_pre_tokenizer
|
||||
let { whitespacePreTokenizer } = require("tokenizers/bindings/pre_tokenizers");
|
||||
let { whitespacePreTokenizer } = require("tokenizers/bindings/pre-tokenizers");
|
||||
|
||||
bertTokenizer.setPreTokenizer = whitespacePreTokenizer();
|
||||
// END bert_setup_pre_tokenizer
|
||||
// START bert_setup_processor
|
||||
let { templateProcessing } = require("tokenizers/bindings/processors");
|
||||
let { templateProcessing } = require("tokenizers/bindings/post-processors");
|
||||
|
||||
bertTokenizer.setPostProcessor(templateProcessing(
|
||||
"[CLS] $A [SEP]",
|
||||
|
190
bindings/node/examples/documentation/quicktour.test.ts
Normal file
190
bindings/node/examples/documentation/quicktour.test.ts
Normal file
@ -0,0 +1,190 @@
|
||||
var globRequire = require;
|
||||
|
||||
describe("quicktourExample", () => {
|
||||
function require(mod: string) {
|
||||
if (mod.startsWith("tokenizers/")) {
|
||||
let path = mod.slice("tokenizers/".length);
|
||||
return globRequire("../../lib/" + path);
|
||||
} else {
|
||||
return globRequire(mod);
|
||||
}
|
||||
}
|
||||
|
||||
it.skip("trains the tokenizer", async () => {
|
||||
// START init_tokenizer
|
||||
let { Tokenizer } = require("tokenizers/bindings/tokenizer");
|
||||
let { BPE } = require("tokenizers/bindings/models");
|
||||
|
||||
let tokenizer = new Tokenizer(BPE.empty());
|
||||
// END init_tokenizer
|
||||
// START init_trainer
|
||||
let { bpeTrainer } = require("tokenizers/bindings/trainers");
|
||||
|
||||
let trainer = bpeTrainer({
|
||||
specialTokens: ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]
|
||||
});
|
||||
// END init_trainer
|
||||
// START init_pretok
|
||||
let { whitespacePreTokenizer } = require("tokenizers/bindings/pre-tokenizers");
|
||||
|
||||
tokenizer.setPreTokenizer(whitespacePreTokenizer());
|
||||
// END init_pretok
|
||||
// START train
|
||||
let files = ["test", "train", "valid"].map(split => `data/wikitext-103-raw/wiki.${split}.raw`);
|
||||
tokenizer.train(trainer, files);
|
||||
// END train
|
||||
// START reload_model
|
||||
let { promisify } = require("util");
|
||||
|
||||
let modelFiles = tokenizer.getModel().save("data", "wiki");
|
||||
let fromFile = promisify(BPE.fromFile);
|
||||
tokenizer.setModel(await fromFile(modelFiles[0], modelFiles[1], {
|
||||
unkToken: "[UNK]"
|
||||
}));
|
||||
// END reload_model
|
||||
// START save
|
||||
tokenizer.save("data/tokenizer-wiki.json");
|
||||
// END save
|
||||
});
|
||||
|
||||
it("shows a quicktour example", async () => {
|
||||
let { Tokenizer } = require("tokenizers/bindings/tokenizer");
|
||||
let console = {
|
||||
log: (..._args: any[]) => {}
|
||||
};
|
||||
|
||||
// START reload_tokenizer
|
||||
let tokenizer = Tokenizer.fromFile("data/tokenizer-wiki.json");
|
||||
// END reload_tokenizer
|
||||
// START encode
|
||||
let { promisify } = require('util');
|
||||
let encode = promisify(tokenizer.encode.bind(tokenizer));
|
||||
|
||||
var output = await encode("Hello, y'all! How are you 😁 ?");
|
||||
// END encode
|
||||
// START print_tokens
|
||||
console.log(output.getTokens());
|
||||
// ["Hello", ",", "y", "'", "all", "!", "How", "are", "you", "[UNK]", "?"]
|
||||
// END print_tokens
|
||||
expect(output.getTokens()).toEqual([
|
||||
"Hello",
|
||||
",",
|
||||
"y",
|
||||
"'",
|
||||
"all",
|
||||
"!",
|
||||
"How",
|
||||
"are",
|
||||
"you",
|
||||
"[UNK]",
|
||||
"?",
|
||||
]);
|
||||
// START print_ids
|
||||
console.log(output.getIds());
|
||||
// [27253, 16, 93, 11, 5097, 5, 7961, 5112, 6218, 0, 35]
|
||||
// END print_ids
|
||||
expect(output.getIds()).toEqual([27253, 16, 93, 11, 5097, 5, 7961, 5112, 6218, 0, 35]);
|
||||
// START print_offsets
|
||||
let offsets = output.getOffsets();
|
||||
console.log(offsets[9]);
|
||||
// (26, 27)
|
||||
// END print_offsets
|
||||
expect(offsets[9]).toEqual([26, 27]);
|
||||
// START use_offsets
|
||||
let { slice } = require("tokenizers/bindings/utils");
|
||||
|
||||
let sentence = "Hello, y'all! How are you 😁 ?"
|
||||
let [start, end] = offsets[9];
|
||||
console.log(slice(sentence, start, end));
|
||||
// "😁"
|
||||
// END use_offsets
|
||||
expect(slice(sentence, start, end)).toEqual("😁");
|
||||
// START check_sep
|
||||
console.log(tokenizer.tokenToId("[SEP]"));
|
||||
// 2
|
||||
// END check_sep
|
||||
expect(tokenizer.tokenToId("[SEP]")).toEqual(2);
|
||||
// START init_template_processing
|
||||
let { templateProcessing } = require("tokenizers/bindings/post-processors");
|
||||
|
||||
tokenizer.setPostProcessor(templateProcessing(
|
||||
"[CLS] $A [SEP]",
|
||||
"[CLS] $A [SEP] $B:1 [SEP]:1",
|
||||
[
|
||||
["[CLS]", tokenizer.tokenToId("[CLS]")],
|
||||
["[SEP]", tokenizer.tokenToId("[SEP]")],
|
||||
],
|
||||
));
|
||||
// END init_template_processing
|
||||
// START print_special_tokens
|
||||
var output = await encode("Hello, y'all! How are you 😁 ?");
|
||||
console.log(output.getTokens());
|
||||
// ["[CLS]", "Hello", ",", "y", "'", "all", "!", "How", "are", "you", "[UNK]", "?", "[SEP]"]
|
||||
// END print_special_tokens
|
||||
expect(output.getTokens()).toEqual([
|
||||
"[CLS]",
|
||||
"Hello",
|
||||
",",
|
||||
"y",
|
||||
"'",
|
||||
"all",
|
||||
"!",
|
||||
"How",
|
||||
"are",
|
||||
"you",
|
||||
"[UNK]",
|
||||
"?",
|
||||
"[SEP]",
|
||||
]);
|
||||
// START print_special_tokens_pair
|
||||
var output = await encode("Hello, y'all!", "How are you 😁 ?");
|
||||
console.log(output.getTokens());
|
||||
// ["[CLS]", "Hello", ",", "y", "'", "all", "!", "[SEP]", "How", "are", "you", "[UNK]", "?", "[SEP]"]
|
||||
// END print_special_tokens_pair
|
||||
expect(output.getTokens()).toEqual([
|
||||
"[CLS]",
|
||||
"Hello",
|
||||
",",
|
||||
"y",
|
||||
"'",
|
||||
"all",
|
||||
"!",
|
||||
"[SEP]",
|
||||
"How",
|
||||
"are",
|
||||
"you",
|
||||
"[UNK]",
|
||||
"?",
|
||||
"[SEP]",
|
||||
]);
|
||||
// START print_type_ids
|
||||
console.log(output.getTypeIds());
|
||||
// [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
|
||||
// END print_type_ids
|
||||
expect(output.getTypeIds()).toEqual([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]);
|
||||
// START encode_batch
|
||||
let encodeBatch = promisify(tokenizer.encodeBatch.bind(tokenizer));
|
||||
|
||||
var output = await encodeBatch(["Hello, y'all!", "How are you 😁 ?"]);
|
||||
// END encode_batch
|
||||
// START encode_batch_pair
|
||||
var output = await encodeBatch(
|
||||
[["Hello, y'all!", "How are you 😁 ?"], ["Hello to you too!", "I'm fine, thank you!"]]
|
||||
);
|
||||
// END encode_batch_pair
|
||||
// START enable_padding
|
||||
tokenizer.setPadding({ padId: 3, padToken: "[PAD]" });
|
||||
// END enable_padding
|
||||
// START print_batch_tokens
|
||||
var output = await encodeBatch(["Hello, y'all!", "How are you 😁 ?"]);
|
||||
console.log(output[1].getTokens());
|
||||
// ["[CLS]", "How", "are", "you", "[UNK]", "?", "[SEP]", "[PAD]"]
|
||||
// END print_batch_tokens
|
||||
expect(output[1].getTokens()).toEqual(["[CLS]", "How", "are", "you", "[UNK]", "?", "[SEP]", "[PAD]"]);
|
||||
// START print_attention_mask
|
||||
console.log(output[1].getAttentionMask());
|
||||
// [1, 1, 1, 1, 1, 1, 1, 0]
|
||||
// END print_attention_mask
|
||||
expect(output[1].getAttentionMask()).toEqual([1, 1, 1, 1, 1, 1, 1, 0]);
|
||||
});
|
||||
});
|
@ -99,6 +99,14 @@ one with a BPE model:
|
||||
:end-before: END quicktour_init_tokenizer
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/quicktour.test.ts
|
||||
:language: javascript
|
||||
:start-after: START init_tokenizer
|
||||
:end-before: END init_tokenizer
|
||||
:dedent: 8
|
||||
|
||||
To train our tokenizer on the wikitext files, we will need to instantiate a `trainer`, in this case
|
||||
a :entity:`BpeTrainer`
|
||||
|
||||
@ -118,6 +126,14 @@ a :entity:`BpeTrainer`
|
||||
:end-before: END quicktour_init_trainer
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/quicktour.test.ts
|
||||
:language: javascript
|
||||
:start-after: START init_trainer
|
||||
:end-before: END init_trainer
|
||||
:dedent: 8
|
||||
|
||||
We can set the training arguments like :entity:`vocab_size` or :entity:`min_frequency` (here left at
|
||||
their default values of 30,000 and 0) but the most important part is to give the
|
||||
:entity:`special_tokens` we plan to use later on (they are not used at all during training) so that
|
||||
@ -151,6 +167,14 @@ on whitespace.
|
||||
:end-before: END quicktour_init_pretok
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/quicktour.test.ts
|
||||
:language: javascript
|
||||
:start-after: START init_pretok
|
||||
:end-before: END init_pretok
|
||||
:dedent: 8
|
||||
|
||||
Now, we can just call the :entity:`Tokenizer.train` method with any list of files we want
|
||||
to use:
|
||||
|
||||
@ -170,6 +194,14 @@ to use:
|
||||
:end-before: END quicktour_train
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/quicktour.test.ts
|
||||
:language: javascript
|
||||
:start-after: START train
|
||||
:end-before: END train
|
||||
:dedent: 8
|
||||
|
||||
This should only take a few seconds to train our tokenizer on the full wikitext dataset! Once this
|
||||
is done, we need to save the model and reinstantiate it with the unknown token, or this token won't
|
||||
be used. This will be simplified in a further release, to let you set the :entity:`unk_token` when
|
||||
@ -191,6 +223,14 @@ first instantiating the model.
|
||||
:end-before: END quicktour_reload_model
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/quicktour.test.ts
|
||||
:language: javascript
|
||||
:start-after: START reload_model
|
||||
:end-before: END reload_model
|
||||
:dedent: 8
|
||||
|
||||
To save the tokenizer in one file that contains all its configuration and vocabulary, just use the
|
||||
:entity:`Tokenizer.save` method:
|
||||
|
||||
@ -210,6 +250,14 @@ To save the tokenizer in one file that contains all its configuration and vocabu
|
||||
:end-before: END quicktour_save
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/quicktour.test.ts
|
||||
:language: javascript
|
||||
:start-after: START save
|
||||
:end-before: END save
|
||||
:dedent: 8
|
||||
|
||||
and you can reload your tokenizer from that file with the :entity:`Tokenizer.from_file`
|
||||
:entity:`classmethod`:
|
||||
|
||||
@ -229,6 +277,14 @@ and you can reload your tokenizer from that file with the :entity:`Tokenizer.fro
|
||||
:end-before: END quicktour_reload_tokenizer
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/quicktour.test.ts
|
||||
:language: javascript
|
||||
:start-after: START reload_tokenizer
|
||||
:end-before: END reload_tokenizer
|
||||
:dedent: 8
|
||||
|
||||
Using the tokenizer
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
@ -251,6 +307,14 @@ Now that we have trained a tokenizer, we can use it on any text we want with the
|
||||
:end-before: END quicktour_encode
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/quicktour.test.ts
|
||||
:language: javascript
|
||||
:start-after: START encode
|
||||
:end-before: END encode
|
||||
:dedent: 8
|
||||
|
||||
This applied the full pipeline of the tokenizer on the text, returning an
|
||||
:entity:`Encoding` object. To learn more about this pipeline, and how to apply (or
|
||||
customize) parts of it, check out :doc:`this page <pipeline>`.
|
||||
@ -275,6 +339,14 @@ tokens:
|
||||
:end-before: END quicktour_print_tokens
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/quicktour.test.ts
|
||||
:language: javascript
|
||||
:start-after: START print_tokens
|
||||
:end-before: END print_tokens
|
||||
:dedent: 8
|
||||
|
||||
Similarly, the :obj:`ids` attribute will contain the index of each of those tokens in the
|
||||
tokenizer's vocabulary:
|
||||
|
||||
@ -294,6 +366,14 @@ tokenizer's vocabulary:
|
||||
:end-before: END quicktour_print_ids
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/quicktour.test.ts
|
||||
:language: javascript
|
||||
:start-after: START print_ids
|
||||
:end-before: END print_ids
|
||||
:dedent: 8
|
||||
|
||||
An important feature of the 🤗 Tokenizers library is that it comes with full alignment tracking,
|
||||
meaning you can always get the part of your original sentence that corresponds to a given token.
|
||||
Those are stored in the :obj:`offsets` attribute of our :entity:`Encoding` object. For
|
||||
@ -316,6 +396,14 @@ which is the token at index 9 in the list, we can just ask for the offset at the
|
||||
:end-before: END quicktour_print_offsets
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/quicktour.test.ts
|
||||
:language: javascript
|
||||
:start-after: START print_offsets
|
||||
:end-before: END print_offsets
|
||||
:dedent: 8
|
||||
|
||||
and those are the indices that correspond to the emoji in the original sentence:
|
||||
|
||||
.. only:: python
|
||||
@ -334,6 +422,14 @@ and those are the indices that correspond to the emoji in the original sentence:
|
||||
:end-before: END quicktour_use_offsets
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/quicktour.test.ts
|
||||
:language: javascript
|
||||
:start-after: START use_offsets
|
||||
:end-before: END use_offsets
|
||||
:dedent: 8
|
||||
|
||||
Post-processing
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
@ -362,6 +458,14 @@ list of special tokens, so this should be their IDs. To double-check, we can use
|
||||
:end-before: END quicktour_check_sep
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/quicktour.test.ts
|
||||
:language: javascript
|
||||
:start-after: START check_sep
|
||||
:end-before: END check_sep
|
||||
:dedent: 8
|
||||
|
||||
Here is how we can set the post-processing to give us the traditional BERT inputs:
|
||||
|
||||
.. only:: python
|
||||
@ -380,6 +484,14 @@ Here is how we can set the post-processing to give us the traditional BERT input
|
||||
:end-before: END quicktour_init_template_processing
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/quicktour.test.ts
|
||||
:language: javascript
|
||||
:start-after: START init_template_processing
|
||||
:end-before: END init_template_processing
|
||||
:dedent: 8
|
||||
|
||||
Let's go over this snippet of code in more details. First we specify the template for single
|
||||
sentences: those should have the form :obj:`"[CLS] $A [SEP]"` where :obj:`$A` represents our
|
||||
sentence.
|
||||
@ -410,6 +522,14 @@ To check out this worked properly, let's try to encode the same sentence as befo
|
||||
:end-before: END quicktour_print_special_tokens
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/quicktour.test.ts
|
||||
:language: javascript
|
||||
:start-after: START print_special_tokens
|
||||
:end-before: END print_special_tokens
|
||||
:dedent: 8
|
||||
|
||||
To check the results on a pair of sentences, we just pass the two sentences to
|
||||
:entity:`Tokenizer.encode`:
|
||||
|
||||
@ -429,6 +549,14 @@ To check the results on a pair of sentences, we just pass the two sentences to
|
||||
:end-before: END quicktour_print_special_tokens_pair
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/quicktour.test.ts
|
||||
:language: javascript
|
||||
:start-after: START print_special_tokens_pair
|
||||
:end-before: END print_special_tokens_pair
|
||||
:dedent: 8
|
||||
|
||||
You can then check the type IDs attributed to each token is correct with
|
||||
|
||||
.. only:: python
|
||||
@ -447,6 +575,14 @@ You can then check the type IDs attributed to each token is correct with
|
||||
:end-before: END quicktour_print_type_ids
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/quicktour.test.ts
|
||||
:language: javascript
|
||||
:start-after: START print_type_ids
|
||||
:end-before: END print_type_ids
|
||||
:dedent: 8
|
||||
|
||||
If you save your tokenizer with :entity:`Tokenizer.save`, the post-processor will be saved along.
|
||||
|
||||
Encoding multiple sentences in a batch
|
||||
@ -471,6 +607,14 @@ using the :entity:`Tokenizer.encode_batch` method:
|
||||
:end-before: END quicktour_encode_batch
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/quicktour.test.ts
|
||||
:language: javascript
|
||||
:start-after: START encode_batch
|
||||
:end-before: END encode_batch
|
||||
:dedent: 8
|
||||
|
||||
The output is then a list of :entity:`Encoding` objects like the ones we saw before. You
|
||||
can process together as many texts as you like, as long as it fits in memory.
|
||||
|
||||
@ -494,6 +638,14 @@ B:
|
||||
:end-before: END quicktour_encode_batch_pair
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/quicktour.test.ts
|
||||
:language: javascript
|
||||
:start-after: START encode_batch_pair
|
||||
:end-before: END encode_batch_pair
|
||||
:dedent: 8
|
||||
|
||||
When encoding multiple sentences, you can automatically pad the outputs to the longest sentence
|
||||
present by using :entity:`Tokenizer.enable_padding`, with the :entity:`pad_token` and its ID
|
||||
(which we can double-check the id for the padding token with
|
||||
@ -515,6 +667,14 @@ present by using :entity:`Tokenizer.enable_padding`, with the :entity:`pad_token
|
||||
:end-before: END quicktour_enable_padding
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/quicktour.test.ts
|
||||
:language: javascript
|
||||
:start-after: START enable_padding
|
||||
:end-before: END enable_padding
|
||||
:dedent: 8
|
||||
|
||||
We can set the :obj:`direction` of the padding (defaults to the right) or a given :obj:`length` if
|
||||
we want to pad every sample to that specific number (here we leave it unset to pad to the size of
|
||||
the longest text).
|
||||
@ -535,6 +695,14 @@ the longest text).
|
||||
:end-before: END quicktour_print_batch_tokens
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/quicktour.test.ts
|
||||
:language: javascript
|
||||
:start-after: START print_batch_tokens
|
||||
:end-before: END print_batch_tokens
|
||||
:dedent: 8
|
||||
|
||||
In this case, the `attention mask` generated by the tokenizer takes the padding into account:
|
||||
|
||||
.. only:: python
|
||||
@ -553,6 +721,14 @@ In this case, the `attention mask` generated by the tokenizer takes the padding
|
||||
:end-before: END quicktour_print_attention_mask
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/quicktour.test.ts
|
||||
:language: javascript
|
||||
:start-after: START print_attention_mask
|
||||
:end-before: END print_attention_mask
|
||||
:dedent: 8
|
||||
|
||||
.. _pretrained:
|
||||
|
||||
.. only:: python
|
||||
|
Reference in New Issue
Block a user