mirror of
https://github.com/mii443/tokenizers.git
synced 2025-08-22 16:25:30 +00:00
Doc - Update Decoder part of the Pipeline page
This commit is contained in:
@ -66,37 +66,20 @@ describe("pipelineExample", () => {
|
||||
[["[CLS]", 1], ["[SEP]", 2]]
|
||||
));
|
||||
// END setup_processor
|
||||
// START test_decoding
|
||||
let output = tokenizer.encode("Hello, y'all! How are you 😁 ?");
|
||||
console.log(output.getIds());
|
||||
// [1, 27253, 16, 93, 11, 5097, 5, 7961, 5112, 6218, 0, 35, 2]
|
||||
|
||||
tokenizer.decode([1, 27253, 16, 93, 11, 5097, 5, 7961, 5112, 6218, 0, 35, 2]);
|
||||
// "Hello , y ' all ! How are you ?"
|
||||
// END test_decoding
|
||||
});
|
||||
|
||||
it("shows a full bert example", async () => {
|
||||
// START bert_setup_tokenizer
|
||||
let { Tokenizer } = require("tokenizers/bindings/tokenizer");
|
||||
var { Tokenizer } = require("tokenizers/bindings/tokenizer");
|
||||
const slow_bert_training = async (bertTokenizer: typeof Tokenizer) => {
|
||||
let { WordPiece } = require("tokenizers/bindings/models");
|
||||
|
||||
let bert_tokenizer = Tokenizer(WordPiece.empty());
|
||||
// END bert_setup_tokenizer
|
||||
// START bert_setup_normalizer
|
||||
let { sequenceNormalizer, lowercaseNormalizer, nfdNormalizer, stripAccentsNormalizer }
|
||||
= require("tokenizers/bindings/normalizers");
|
||||
|
||||
bert_tokenizer.setNormalizer(sequenceNormalizer([
|
||||
nfdNormalizer(), lowercaseNormalizer(), stripAccentsNormalizer()
|
||||
]))
|
||||
// END bert_setup_normalizer
|
||||
// START bert_setup_pre_tokenizer
|
||||
let { whitespacePreTokenizer } = require("tokenizers/bindings/pre_tokenizers");
|
||||
|
||||
bert_tokenizer.setPreTokenizer = whitespacePreTokenizer();
|
||||
// END bert_setup_pre_tokenizer
|
||||
// START bert_setup_processor
|
||||
let { templateProcessing } = require("tokenizers/bindings/processors");
|
||||
|
||||
bert_tokenizer.setPostProcessor(templateProcessing(
|
||||
"[CLS] $A [SEP]",
|
||||
"[CLS] $A [SEP] $B:1 [SEP]:1",
|
||||
[["[CLS]", 1], ["[SEP]", 2]]
|
||||
));
|
||||
// END bert_setup_processor
|
||||
// START bert_train_tokenizer
|
||||
let { wordPieceTrainer } = require("tokenizers/bindings/trainers");
|
||||
let { promisify } = require("utils");
|
||||
@ -106,15 +89,61 @@ describe("pipelineExample", () => {
|
||||
specialTokens: ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]
|
||||
});
|
||||
let files = ["test", "train", "valid"].map(split => `data/wikitext-103-raw/wiki.${split}.raw`);
|
||||
bert_tokenizer.train(trainer, files);
|
||||
bertTokenizer.train(trainer, files);
|
||||
|
||||
let model_files = bert_tokenizer.getModel.save("data", "bert-wiki");
|
||||
let modelFiles = bertTokenizer.getModel.save("data", "bert-wiki");
|
||||
let fromFile = promisify(WordPiece.fromFile);
|
||||
bert_tokenizer.setModel(await fromFile(model_files[0], {
|
||||
bertTokenizer.setModel(await fromFile(modelFiles[0], {
|
||||
unkToken: "[UNK]"
|
||||
}));
|
||||
|
||||
bert_tokenizer.save("data/bert-wiki.json")
|
||||
bertTokenizer.save("data/bert-wiki.json")
|
||||
// END bert_train_tokenizer
|
||||
};
|
||||
console.log(slow_bert_training); // disable unused warning
|
||||
|
||||
it("shows a full bert example", async () => {
|
||||
// START bert_setup_tokenizer
|
||||
let { Tokenizer } = require("tokenizers/bindings/tokenizer");
|
||||
let { WordPiece } = require("tokenizers/bindings/models");
|
||||
|
||||
let bertTokenizer = Tokenizer(WordPiece.empty());
|
||||
// END bert_setup_tokenizer
|
||||
// START bert_setup_normalizer
|
||||
let { sequenceNormalizer, lowercaseNormalizer, nfdNormalizer, stripAccentsNormalizer }
|
||||
= require("tokenizers/bindings/normalizers");
|
||||
|
||||
bertTokenizer.setNormalizer(sequenceNormalizer([
|
||||
nfdNormalizer(), lowercaseNormalizer(), stripAccentsNormalizer()
|
||||
]))
|
||||
// END bert_setup_normalizer
|
||||
// START bert_setup_pre_tokenizer
|
||||
let { whitespacePreTokenizer } = require("tokenizers/bindings/pre_tokenizers");
|
||||
|
||||
bertTokenizer.setPreTokenizer = whitespacePreTokenizer();
|
||||
// END bert_setup_pre_tokenizer
|
||||
// START bert_setup_processor
|
||||
let { templateProcessing } = require("tokenizers/bindings/processors");
|
||||
|
||||
bertTokenizer.setPostProcessor(templateProcessing(
|
||||
"[CLS] $A [SEP]",
|
||||
"[CLS] $A [SEP] $B:1 [SEP]:1",
|
||||
[["[CLS]", 1], ["[SEP]", 2]]
|
||||
));
|
||||
// END bert_setup_processor
|
||||
// START bert_test_decoding
|
||||
let output = bertTokenizer.encode("Welcome to the 🤗 Tokenizers library.");
|
||||
console.log(output.getTokens());
|
||||
// ["[CLS]", "welcome", "to", "the", "[UNK]", "tok", "##eni", "##zer", "##s", "library", ".", "[SEP]"]
|
||||
|
||||
bertTokenizer.decode(output.getIds());
|
||||
// "welcome to the tok ##eni ##zer ##s library ."
|
||||
// END bert_test_decoding
|
||||
// START bert_proper_decoding
|
||||
let { wordPieceDecoder } = require("tokenizers/bindings/decoders");
|
||||
bertTokenizer.setDecoder(wordPieceDecoder());
|
||||
bertTokenizer.decode(output.ids);
|
||||
// "welcome to the tokenizers library."
|
||||
// END bert_proper_decoding
|
||||
});
|
||||
});
|
||||
|
@ -76,14 +76,27 @@ class TestPipeline:
|
||||
# START setup_processor
|
||||
from tokenizers.processors import TemplateProcessing
|
||||
|
||||
tokenizer.post_processor = TemplateProcessing
|
||||
tokenizer.post_processor = TemplateProcessing(
|
||||
single="[CLS] $A [SEP]",
|
||||
pair="[CLS] $A [SEP] $B:1 [SEP]:1",
|
||||
special_tokens=[("[CLS]", 1), ("[SEP]", 2)],
|
||||
)
|
||||
# END setup_processor
|
||||
# START test_decoding
|
||||
output = tokenizer.encode("Hello, y'all! How are you 😁 ?")
|
||||
print(output.ids)
|
||||
# [1, 27253, 16, 93, 11, 5097, 5, 7961, 5112, 6218, 0, 35, 2]
|
||||
|
||||
def test_bert_example(self):
|
||||
tokenizer.decode([1, 27253, 16, 93, 11, 5097, 5, 7961, 5112, 6218, 0, 35, 2])
|
||||
# "Hello , y ' all ! How are you ?"
|
||||
# END test_decoding
|
||||
assert output.ids == [1, 27253, 16, 93, 11, 5097, 5, 7961, 5112, 6218, 0, 35, 2]
|
||||
assert (
|
||||
tokenizer.decode([1, 27253, 16, 93, 11, 5097, 5, 7961, 5112, 6218, 0, 35, 2])
|
||||
== "Hello , y ' all ! How are you ?"
|
||||
)
|
||||
|
||||
def bert_example(self):
|
||||
# START bert_setup_tokenizer
|
||||
from tokenizers import Tokenizer
|
||||
from tokenizers.models import WordPiece
|
||||
@ -94,9 +107,7 @@ class TestPipeline:
|
||||
from tokenizers import normalizers
|
||||
from tokenizers.normalizers import Lowercase, NFD, StripAccents
|
||||
|
||||
bert_tokenizer.normalizer = normalizers.Sequence([
|
||||
NFD(), Lowercase(), StripAccents()
|
||||
])
|
||||
bert_tokenizer.normalizer = normalizers.Sequence([NFD(), Lowercase(), StripAccents()])
|
||||
# END bert_setup_normalizer
|
||||
# START bert_setup_pre_tokenizer
|
||||
from tokenizers.pre_tokenizers import Whitespace
|
||||
@ -112,7 +123,7 @@ class TestPipeline:
|
||||
special_tokens=[
|
||||
("[CLS]", 1),
|
||||
("[SEP]", 2),
|
||||
]
|
||||
],
|
||||
)
|
||||
# END bert_setup_processor
|
||||
# START bert_train_tokenizer
|
||||
@ -129,3 +140,16 @@ class TestPipeline:
|
||||
|
||||
bert_tokenizer.save("data/bert-wiki.json")
|
||||
# END bert_train_tokenizer
|
||||
# START bert_test_decoding
|
||||
output = bert_tokenizer.encode("Welcome to the 🤗 Tokenizers library.")
|
||||
print(output.tokens)
|
||||
# ["[CLS]", "welcome", "to", "the", "[UNK]", "tok", "##eni", "##zer", "##s", "library", ".", "[SEP]"]
|
||||
|
||||
bert_tokenizer.decoder(output.ids)
|
||||
# "welcome to the tok ##eni ##zer ##s library ."
|
||||
# END bert_test_decoding
|
||||
# START bert_proper_decoding
|
||||
bert_tokenizer.decoder = tokenizers.decoders.WordPiece()
|
||||
bert_tokenizer.decode(output.ids)
|
||||
# "welcome to the tokenizers library."
|
||||
# END bert_proper_decoding
|
||||
|
@ -18,6 +18,10 @@
|
||||
:meth:`~tokenizers.Tokenizer.encode`
|
||||
Tokenizer.encode_batch
|
||||
:meth:`~tokenizers.Tokenizer.encode_batch`
|
||||
Tokenizer.decode
|
||||
:meth:`~tokenizers.Tokenizer.decode`
|
||||
Tokenizer.decode_batch
|
||||
:meth:`~tokenizers.Tokenizer.decode_batch`
|
||||
Tokenizer.token_to_id
|
||||
:meth:`~tokenizers.Tokenizer.token_to_id`
|
||||
Tokenizer.enable_padding
|
||||
@ -42,6 +46,8 @@
|
||||
:class:`~tokenizers.models.WordLevel`
|
||||
models.WordPiece
|
||||
:class:`~tokenizers.models.WordPiece`
|
||||
Decoder
|
||||
:class:`~tokenizers.decoders.Decoder`
|
||||
|
||||
.. entities:: rust
|
||||
|
||||
@ -63,6 +69,10 @@
|
||||
:rust:meth:`~tokenizers::tokenizer::Tokenizer::encode`
|
||||
Tokenizer.encode_batch
|
||||
:rust:meth:`~tokenizers::tokenizer::Tokenizer::encode_batch`
|
||||
Tokenizer.decode
|
||||
:rust:meth:`~tokenizers::tokenizer::Tokenizer::decode`
|
||||
Tokenizer.decode_batch
|
||||
:rust:meth:`~tokenizers::tokenizer::Tokenizer::decode_batch`
|
||||
Tokenizer.token_to_id
|
||||
:rust:meth:`~tokenizers::tokenizer::Tokenizer::token_to_id`
|
||||
Tokenizer.enable_padding
|
||||
@ -87,6 +97,8 @@
|
||||
:rust:struct:`~tokenizers::models::wordlevel::WordLevel`
|
||||
models.WordPiece
|
||||
:rust:struct:`~tokenizers::models::wordpiece::WordPiece`
|
||||
Decoder
|
||||
:rust:trait:`~tokenizers::tokenizer::Decoder`
|
||||
|
||||
.. entities:: node
|
||||
|
||||
@ -108,6 +120,10 @@
|
||||
:obj:`Tokenizer.encode()`
|
||||
Tokenizer.encode_batch
|
||||
:obj:`Tokenizer.encodeBatch()`
|
||||
Tokenizer.decode
|
||||
:obj:`Tokenizer.decode()`
|
||||
Tokenizer.decode_batch
|
||||
:obj:`Tokenizer.decodeBatch()`
|
||||
Tokenizer.token_to_id
|
||||
:obj:`Tokenizer.tokenToId()`
|
||||
Tokenizer.enable_padding
|
||||
@ -132,3 +148,5 @@
|
||||
:obj:`WordLevel`
|
||||
models.WordPiece
|
||||
:obj:`WordPiece`
|
||||
Decoder
|
||||
:obj:`Decoder`
|
||||
|
@ -447,40 +447,104 @@ We can use this tokenizer and train on it on wikitext like in the :doc:`quicktou
|
||||
Decoding
|
||||
----------------------------------------------------------------------------------------------------
|
||||
|
||||
On top of encoding the input texts, a :class:`~tokenizers.Tokenizer` also has an API for decoding,
|
||||
.. entities:: python
|
||||
|
||||
bert_tokenizer
|
||||
:obj:`bert_tokenizer`
|
||||
|
||||
.. entities:: rust
|
||||
|
||||
bert_tokenizer
|
||||
:obj:`bert_tokenizer`
|
||||
|
||||
.. entities:: node
|
||||
|
||||
bert_tokenizer
|
||||
:obj:`bertTokenizer`
|
||||
|
||||
|
||||
On top of encoding the input texts, a :entity:`Tokenizer` also has an API for decoding,
|
||||
that is converting IDs generated by your model back to a text. This is done by the methods
|
||||
:meth:`~tokenizers.Tokenizer.decode` (for one predicted text) and
|
||||
:meth:`~tokenizers.Tokenizer.decode_batch` (for a batch of predictions).
|
||||
:entity:`Tokenizer.decode` (for one predicted text) and :entity:`Tokenizer.decode_batch` (for a
|
||||
batch of predictions).
|
||||
|
||||
The `decoder` will first convert the IDs back to tokens (using the tokenizer's vocabulary) and
|
||||
remove all special tokens, then join those tokens with spaces:
|
||||
|
||||
.. code-block:: python
|
||||
.. only:: python
|
||||
|
||||
output = tokenizer.encode("Hello, y'all! How are you 😁 ?")
|
||||
print(output.ids)
|
||||
# [27194, 16, 93, 11, 5068, 5, 7928, 5083, 6190, 0, 35]
|
||||
.. literalinclude:: ../../bindings/python/tests/documentation/test_pipeline.py
|
||||
:language: python
|
||||
:start-after: START test_decoding
|
||||
:end-before: END test_decoding
|
||||
:dedent: 8
|
||||
|
||||
tokenizer.decode([27194, 16, 93, 11, 5068, 5, 7928, 5083, 6190, 0, 35])
|
||||
# "Hello , y ' all ! How are you ?"
|
||||
.. only:: rust
|
||||
|
||||
.. literalinclude:: ../../tokenizers/tests/documentation.rs
|
||||
:language: rust
|
||||
:start-after: START pipeline_test_decoding
|
||||
:end-before: END pipeline_test_decoding
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/pipeline.test.ts
|
||||
:language: javascript
|
||||
:start-after: START test_decoding
|
||||
:end-before: END test_decoding
|
||||
:dedent: 8
|
||||
|
||||
If you used a model that added special characters to represent subtokens of a given "word" (like
|
||||
the :obj:`"##"` in WordPiece) you will need to customize the `decoder` to treat them properly. If we
|
||||
take our previous :obj:`bert_tokenizer` for instance the default decoing will give:
|
||||
take our previous :entity:`bert_tokenizer` for instance the default decoing will give:
|
||||
|
||||
.. code-block:: python
|
||||
.. only:: python
|
||||
|
||||
output = bert_tokenizer.encode("Welcome to the 🤗 Tokenizers library.")
|
||||
print(output.tokens)
|
||||
# ["[CLS]", "welcome", "to", "the", "[UNK]", "tok", "##eni", "##zer", "##s", "library", ".", "[SEP]"]
|
||||
.. literalinclude:: ../../bindings/python/tests/documentation/test_pipeline.py
|
||||
:language: python
|
||||
:start-after: START bert_test_decoding
|
||||
:end-before: END bert_test_decoding
|
||||
:dedent: 8
|
||||
|
||||
bert_tokenizer.decoder(output.ids)
|
||||
# "welcome to the tok ##eni ##zer ##s library ."
|
||||
.. only:: rust
|
||||
|
||||
.. literalinclude:: ../../tokenizers/tests/documentation.rs
|
||||
:language: rust
|
||||
:start-after: START bert_test_decoding
|
||||
:end-before: END bert_test_decoding
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/pipeline.test.ts
|
||||
:language: javascript
|
||||
:start-after: START bert_test_decoding
|
||||
:end-before: END bert_test_decoding
|
||||
:dedent: 8
|
||||
|
||||
But by changing it to a proper decoder, we get:
|
||||
|
||||
.. code-block:: python
|
||||
.. only:: python
|
||||
|
||||
bert_tokenizer.decoder = tokenizers.decoders.WordPiece()
|
||||
bert_tokenizer.decode(output.ids)
|
||||
# "welcome to the tokenizers library."
|
||||
.. literalinclude:: ../../bindings/python/tests/documentation/test_pipeline.py
|
||||
:language: python
|
||||
:start-after: START bert_proper_decoding
|
||||
:end-before: END bert_proper_decoding
|
||||
:dedent: 8
|
||||
|
||||
.. only:: rust
|
||||
|
||||
.. literalinclude:: ../../tokenizers/tests/documentation.rs
|
||||
:language: rust
|
||||
:start-after: START bert_proper_decoding
|
||||
:end-before: END bert_proper_decoding
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/pipeline.test.ts
|
||||
:language: javascript
|
||||
:start-after: START bert_proper_decoding
|
||||
:end-before: END bert_proper_decoding
|
||||
:dedent: 8
|
||||
|
@ -368,6 +368,18 @@ fn pipeline() -> tokenizers::Result<()> {
|
||||
.unwrap(),
|
||||
);
|
||||
// END pipeline_setup_processor
|
||||
// START pipeline_test_decoding
|
||||
let output = tokenizer.encode("Hello, y'all! How are you 😁 ?", true)?;
|
||||
println!("{:?}", output.get_ids());
|
||||
// [1, 27253, 16, 93, 11, 5097, 5, 7961, 5112, 6218, 0, 35, 2]
|
||||
|
||||
let decoded = tokenizer.decode(
|
||||
vec![1, 27253, 16, 93, 11, 5097, 5, 7961, 5112, 6218, 0, 35, 2],
|
||||
true,
|
||||
)?;
|
||||
println!("{}", decoded);
|
||||
// "Hello , y ' all ! How are you ?"
|
||||
// END pipeline_test_decoding
|
||||
|
||||
Ok(())
|
||||
}
|
||||
@ -444,6 +456,22 @@ fn pipeline_bert() -> tokenizers::Result<()> {
|
||||
|
||||
bert_tokenizer.save("data/bert-wiki.json", false)?;
|
||||
// END bert_train_tokenizer
|
||||
// START bert_test_decoding
|
||||
let output = bert_tokenizer.encode("Welcome to the 🤗 Tokenizers library.", true)?;
|
||||
println!("{:?}", output.get_tokens());
|
||||
// ["[CLS]", "welcome", "to", "the", "[UNK]", "tok", "##eni", "##zer", "##s", "library", ".", "[SEP]"]
|
||||
|
||||
let decoded = bert_tokenizer.decode(output.get_ids().to_vec(), true)?;
|
||||
println!("{}", decoded);
|
||||
// "welcome to the tok ##eni ##zer ##s library ."
|
||||
// END bert_test_decoding
|
||||
// START bert_proper_decoding
|
||||
use tokenizers::decoders::wordpiece::WordPiece as WordPieceDecoder;
|
||||
bert_tokenizer.with_decoder(WordPieceDecoder::default());
|
||||
let decoded = bert_tokenizer.decode(output.get_ids().to_vec(), true)?;
|
||||
// "welcome to the tokenizers library."
|
||||
// END bert_proper_decoding
|
||||
println!("{}", decoded);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
Reference in New Issue
Block a user