Chris Ha cb8d4de599 fix documentation regarding regex (#1264)
* fix documentation regarding regex

Split() in pre_tokenizers.rs and normalizations take a regex that is required to be built with a tokenizer specific regex module.
Clarify this in the documentation.

* Update __init__.pyi

fixed __init__.pyi

* Update bindings/python/py_src/tokenizers/__init__.pyi

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update bindings/python/py_src/tokenizers/__init__.pyi

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Revert "Update bindings/python/py_src/tokenizers/__init__.pyi"

This reverts commit 6e8bdfcddf67bcdd8e3b1a78685fd5ef8f6a153c.

* Revert "Update bindings/python/py_src/tokenizers/__init__.pyi"

This reverts commit 897b0c0de471ad7cb6269b8456347c4e5cff2aaf.

* Revert "Update __init__.pyi"

This reverts commit fbe82310b7728ee7cdb6f8b38fbc2388f9d95771.

* add codeblocks the right way

* add codeblocks with stub.py

ran setup.py install to build, and then ran stub.py

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-06-07 09:41:28 +02:00
2023-06-06 11:10:28 +02:00
2023-05-25 12:24:29 +02:00
2023-05-15 18:01:29 +02:00
2020-01-04 23:31:02 -05:00



Build GitHub

Provides an implementation of today's most used tokenizers, with a focus on performance and versatility.

Main features:

  • Train new vocabularies and tokenize, using today's most used tokenizers.
  • Extremely fast (both training and tokenization), thanks to the Rust implementation. Takes less than 20 seconds to tokenize a GB of text on a server's CPU.
  • Easy to use, but also extremely versatile.
  • Designed for research and production.
  • Normalization comes with alignments tracking. It's always possible to get the part of the original sentence that corresponds to a given token.
  • Does all the pre-processing: Truncate, Pad, add the special tokens your model needs.

Bindings

We provide bindings to the following languages (more to come!):

Quick example using Python:

Choose your model between Byte-Pair Encoding, WordPiece or Unigram and instantiate a tokenizer:

from tokenizers import Tokenizer
from tokenizers.models import BPE

tokenizer = Tokenizer(BPE())

You can customize how pre-tokenization (e.g., splitting into words) is done:

from tokenizers.pre_tokenizers import Whitespace

tokenizer.pre_tokenizer = Whitespace()

Then training your tokenizer on a set of files just takes two lines of codes:

from tokenizers.trainers import BpeTrainer

trainer = BpeTrainer(special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])
tokenizer.train(files=["wiki.train.raw", "wiki.valid.raw", "wiki.test.raw"], trainer=trainer)

Once your tokenizer is trained, encode any text with just one line:

output = tokenizer.encode("Hello, y'all! How are you 😁 ?")
print(output.tokens)
# ["Hello", ",", "y", "'", "all", "!", "How", "are", "you", "[UNK]", "?"]

Check the python documentation or the python quicktour to learn more!

Description
No description provided
Readme Apache-2.0 7.4 MiB
Languages
Rust 72.3%
Python 20%
Jupyter Notebook 4.5%
TypeScript 2.3%
JavaScript 0.4%
Other 0.5%