dependabot[bot] 9c0e700212 Bump webpack in /tokenizers/examples/unstable_wasm/www (#1181)
Bumps [webpack](https://github.com/webpack/webpack) from 5.75.0 to 5.76.0.
- [Release notes](https://github.com/webpack/webpack/releases)
- [Commits](https://github.com/webpack/webpack/compare/v5.75.0...v5.76.0)

---
updated-dependencies:
- dependency-name: webpack
  dependency-type: direct:development
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-03-15 10:54:26 +01:00
2023-01-16 16:40:46 +01:00
2023-03-08 11:27:47 +01:00
2022-12-26 11:13:38 +01:00
2020-01-04 23:31:02 -05:00



Build GitHub

Provides an implementation of today's most used tokenizers, with a focus on performance and versatility.

Main features:

  • Train new vocabularies and tokenize, using today's most used tokenizers.
  • Extremely fast (both training and tokenization), thanks to the Rust implementation. Takes less than 20 seconds to tokenize a GB of text on a server's CPU.
  • Easy to use, but also extremely versatile.
  • Designed for research and production.
  • Normalization comes with alignments tracking. It's always possible to get the part of the original sentence that corresponds to a given token.
  • Does all the pre-processing: Truncate, Pad, add the special tokens your model needs.

Bindings

We provide bindings to the following languages (more to come!):

Quick example using Python:

Choose your model between Byte-Pair Encoding, WordPiece or Unigram and instantiate a tokenizer:

from tokenizers import Tokenizer
from tokenizers.models import BPE

tokenizer = Tokenizer(BPE())

You can customize how pre-tokenization (e.g., splitting into words) is done:

from tokenizers.pre_tokenizers import Whitespace

tokenizer.pre_tokenizer = Whitespace()

Then training your tokenizer on a set of files just takes two lines of codes:

from tokenizers.trainers import BpeTrainer

trainer = BpeTrainer(special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])
tokenizer.train(files=["wiki.train.raw", "wiki.valid.raw", "wiki.test.raw"], trainer=trainer)

Once your tokenizer is trained, encode any text with just one line:

output = tokenizer.encode("Hello, y'all! How are you 😁 ?")
print(output.tokens)
# ["Hello", ",", "y", "'", "all", "!", "How", "are", "you", "[UNK]", "?"]

Check the python documentation or the python quicktour to learn more!

Description
No description provided
Readme Apache-2.0 7.4 MiB
Languages
Rust 72.3%
Python 20%
Jupyter Notebook 4.5%
TypeScript 2.3%
JavaScript 0.4%
Other 0.5%