mirror of
https://github.com/mii443/tokenizers.git
synced 2025-08-22 16:25:30 +00:00
Add a way to specify the unknown token in SentencePieceUnigramTokenizer
python implem (#762)
* add a way to specify the unknown token in `SentencePieceUnigramTokenizer` * add test that verify that an exception is raised for the missing unknown token * style * add test tokens
This commit is contained in:
@ -49,13 +49,29 @@ class SentencePieceUnigramTokenizer(BaseTokenizer):
|
||||
vocab_size: int = 8000,
|
||||
show_progress: bool = True,
|
||||
special_tokens: List[Union[str, AddedToken]] = [],
|
||||
unk_token: Optional[str] = None,
|
||||
):
|
||||
""" Train the model using the given files """
|
||||
"""
|
||||
Train the model using the given files
|
||||
|
||||
Args:
|
||||
files (:obj:`List[str]`):
|
||||
A list of path to the files that we should use for training
|
||||
vocab_size (:obj:`int`):
|
||||
The size of the final vocabulary, including all tokens and alphabet.
|
||||
show_progress (:obj:`bool`):
|
||||
Whether to show progress bars while training.
|
||||
special_tokens (:obj:`List[Union[str, AddedToken]]`):
|
||||
A list of special tokens the model should know of.
|
||||
unk_token (:obj:`str`, `optional`):
|
||||
The unknown token to be used by the model.
|
||||
"""
|
||||
|
||||
trainer = trainers.UnigramTrainer(
|
||||
vocab_size=vocab_size,
|
||||
special_tokens=special_tokens,
|
||||
show_progress=show_progress,
|
||||
unk_token=unk_token,
|
||||
)
|
||||
|
||||
if isinstance(files, str):
|
||||
@ -68,13 +84,29 @@ class SentencePieceUnigramTokenizer(BaseTokenizer):
|
||||
vocab_size: int = 8000,
|
||||
show_progress: bool = True,
|
||||
special_tokens: List[Union[str, AddedToken]] = [],
|
||||
unk_token: Optional[str] = None,
|
||||
):
|
||||
""" Train the model using the given iterator """
|
||||
"""
|
||||
Train the model using the given iterator
|
||||
|
||||
Args:
|
||||
iterator (:obj:`Union[Iterator[str], Iterator[Iterator[str]]]`):
|
||||
Any iterator over strings or list of strings
|
||||
vocab_size (:obj:`int`):
|
||||
The size of the final vocabulary, including all tokens and alphabet.
|
||||
show_progress (:obj:`bool`):
|
||||
Whether to show progress bars while training.
|
||||
special_tokens (:obj:`List[Union[str, AddedToken]]`):
|
||||
A list of special tokens the model should know of.
|
||||
unk_token (:obj:`str`, `optional`):
|
||||
The unknown token to be used by the model.
|
||||
"""
|
||||
|
||||
trainer = trainers.UnigramTrainer(
|
||||
vocab_size=vocab_size,
|
||||
special_tokens=special_tokens,
|
||||
show_progress=show_progress,
|
||||
unk_token=unk_token,
|
||||
)
|
||||
|
||||
self._tokenizer.train_from_iterator(iterator, trainer=trainer)
|
||||
|
@ -2,7 +2,7 @@ from setuptools import setup
|
||||
from setuptools_rust import Binding, RustExtension
|
||||
|
||||
extras = {}
|
||||
extras["testing"] = ["pytest"]
|
||||
extras["testing"] = ["pytest", "requests", "numpy", "datasets"]
|
||||
|
||||
setup(
|
||||
name="tokenizers",
|
||||
|
@ -1,5 +1,7 @@
|
||||
import os
|
||||
import pytest
|
||||
|
||||
|
||||
from tokenizers import SentencePieceBPETokenizer, SentencePieceUnigramTokenizer
|
||||
|
||||
|
||||
@ -14,6 +16,32 @@ class TestSentencePieceBPE:
|
||||
|
||||
|
||||
class TestSentencePieceUnigram:
|
||||
def test_train(self, tmpdir):
|
||||
p = tmpdir.mkdir("tmpdir").join("file.txt")
|
||||
p.write("A first sentence\nAnother sentence\nAnd a last one")
|
||||
|
||||
tokenizer = SentencePieceUnigramTokenizer()
|
||||
tokenizer.train(files=str(p), show_progress=False)
|
||||
|
||||
output = tokenizer.encode("A sentence")
|
||||
assert output.tokens == ["▁A", "▁", "s", "en", "t", "en", "c", "e"]
|
||||
|
||||
with pytest.raises(Exception) as excinfo:
|
||||
_ = tokenizer.encode("A sentence 🤗")
|
||||
assert str(excinfo.value) == "Encountered an unknown token but `unk_id` is missing"
|
||||
|
||||
def test_train_with_unk_token(self, tmpdir):
|
||||
p = tmpdir.mkdir("tmpdir").join("file.txt")
|
||||
p.write("A first sentence\nAnother sentence\nAnd a last one")
|
||||
|
||||
tokenizer = SentencePieceUnigramTokenizer()
|
||||
tokenizer.train(
|
||||
files=str(p), show_progress=False, special_tokens=["<unk>"], unk_token="<unk>"
|
||||
)
|
||||
output = tokenizer.encode("A sentence 🤗")
|
||||
assert output.ids[-1] == 0
|
||||
assert output.tokens == ["▁A", "▁", "s", "en", "t", "en", "c", "e", "▁", "🤗"]
|
||||
|
||||
def test_train_from_iterator(self):
|
||||
text = ["A first sentence", "Another sentence", "And a last one"]
|
||||
tokenizer = SentencePieceUnigramTokenizer()
|
||||
@ -21,3 +49,17 @@ class TestSentencePieceUnigram:
|
||||
|
||||
output = tokenizer.encode("A sentence")
|
||||
assert output.tokens == ["▁A", "▁", "s", "en", "t", "en", "c", "e"]
|
||||
|
||||
with pytest.raises(Exception) as excinfo:
|
||||
_ = tokenizer.encode("A sentence 🤗")
|
||||
assert str(excinfo.value) == "Encountered an unknown token but `unk_id` is missing"
|
||||
|
||||
def test_train_from_iterator_with_unk_token(self):
|
||||
text = ["A first sentence", "Another sentence", "And a last one"]
|
||||
tokenizer = SentencePieceUnigramTokenizer()
|
||||
tokenizer.train_from_iterator(
|
||||
text, vocab_size=100, show_progress=False, special_tokens=["<unk>"], unk_token="<unk>"
|
||||
)
|
||||
output = tokenizer.encode("A sentence 🤗")
|
||||
assert output.ids[-1] == 0
|
||||
assert output.tokens == ["▁A", "▁", "s", "en", "t", "en", "c", "e", "▁", "🤗"]
|
||||
|
Reference in New Issue
Block a user