Python - Adding tokenizers classes - WIP

This commit is contained in:
Anthony MOI
2020-01-07 16:20:20 -05:00
parent 6294d342d5
commit 63063118df
6 changed files with 220 additions and 1 deletions

View File

@ -20,7 +20,8 @@ setup(
"tokenizers.normalizers",
"tokenizers.pre_tokenizers",
"tokenizers.processors",
"tokenizers.trainers"
"tokenizers.trainers",
"tokenizers.implementations",
],
package_data = {
'tokenizers': [ 'py.typed', '__init__.pyi' ],
@ -30,6 +31,7 @@ setup(
'tokenizers.pre_tokenizers': [ 'py.typed', '__init__.pyi' ],
'tokenizers.processors': [ 'py.typed', '__init__.pyi' ],
'tokenizers.trainers': [ 'py.typed', '__init__.pyi' ],
'tokenizers.implementations': [ 'py.typed' ],
},
zip_safe=False,
)

View File

@ -7,3 +7,4 @@ from .tokenizers import normalizers
from .tokenizers import pre_tokenizers
from .tokenizers import processors
from .tokenizers import trainers
from .implementations import ByteLevelBpe

View File

@ -5,6 +5,8 @@ from tokenizers import pre_tokenizers
from tokenizers import processors
from tokenizers import trainers
from tokenizers.implementations import ByteLevelBpe
from typing import Optional, Union, List, Tuple
Offsets = Tuple[int, int]

View File

@ -0,0 +1,2 @@
from .base_tokenizer import BaseTokenizer
from .byte_level_bpe import ByteLevelBpe

View File

@ -0,0 +1,185 @@
from .tokenizers import Tokenizer
from typing import List, Union, Tuple
class BaseTokenizer:
_tokenizer: Tokenizer
def __init__(self, tokenizer: Tokenizer):
self._tokenizer = tokenizer
def with_padding(self,
direction: Optional[str] = "right",
pad_id: Optional[int] = 0,
pad_type_id: Optional[int] = 0,
pad_token: Optional[str] = "[PAD]",
max_length: Optional[int] = None):
""" Change the padding strategy
Args:
direction: (`optional`) str:
Can be one of: `right` or `left`
pad_id: (`optional`) unsigned int:
The indice to be used when padding
pad_type_id: (`optional`) unsigned int:
The type indice to be used when padding
pad_token: (`optional`) str:
The pad token to be used when padding
max_length: (`optional`) unsigned int:
If specified, the length at which to pad. If not specified
we pad using the size of the longest sequence in a batch
"""
return self._tokenizer.with_padding(direction=direction,
pad_id=pad_id,
pad_type_id=pad_type_id,
pad_token=pad_token,
max_length=max_length)
def without_padding(self):
""" Disable padding """
return self._tokenizer.without_padding()
def with_truncation(self,
max_length: int,
stride: Optional[int],
strategy: Optional[str]):
""" Change the truncation options
Args:
max_length: unsigned int:
The maximum length at which to truncate
stride: (`optional`) unsigned int:
The length of the previous first sequence to be included
in the overflowing sequence
strategy: (`optional) str:
Can be one of `longest_first`, `only_first` or `only_second`
"""
return self._tokenizer.with_truncation(max_length,
stride=stride,
strategy=strategy)
def without_truncation(self):
""" Disable truncation """
return self._tokenizer.without_truncation()
def add_tokens(self, tokens: List[Union[str, Tuple[str, bool]]]) -> int:
""" Add the given tokens to the vocabulary
Args:
tokens: List[Union[str, Tuple[str, bool]]]:
A list of tokens to add to the vocabulary. Each token can either be
a string, or a tuple with a string representing the token, and a boolean
option representing whether to match on single words only.
If the boolean is not included, it defaults to False
Returns:
The number of tokens that were added to the vocabulary
"""
return self._tokenizer.add_tokens(tokens)
def add_special_tokens(self, special_tokens: List[str]) -> int:
""" Add the given special tokens to the vocabulary, and treat them as special tokens.
The special tokens will never be processed by the model, and will be
removed while decoding.
Args:
tokens: List[str]:
The list of special tokens to add
Returns:
The number of tokens that were added to the vocabulary
"""
return self._tokenizer.add_special_tokens(tokens)
def encode(self, sequence: str, pair: Optional[str] = None) -> Encoding:
""" Encode the given sequence
Args:
sequence: str:
The sequence to encode
pair: (`optional`) Optional[str]:
The optional pair sequence
Returns:
An Encoding
"""
return self._tokenizer.encode(sequence, pair)
def encode_batch(self, sequences: List[Union[str, Tuple[str, str]]]) -> List[Encoding]:
""" Encode the given sequences or pair of sequences
Args:
sequences: List[Union[str, Tuple[str, str]]]:
A list of sequences or pair of sequences. The list can contain both
at the same time.
Returns:
A list of Encoding
"""
return self._tokenizer.encode_batch(sequences)
def decode(self, ids: List[int], skip_special_tokens: Optional[bool] = True) -> str:
""" Decode the given list of ids to a string sequence
Args:
ids: List[unsigned int]:
A list of ids to be decoded
skip_special_tokens: (`optional`) boolean:
Whether to remove all the special tokens from the output string
Returns:
The decoded string
"""
return self._tokenizer.decode(ids, skip_special_tokens=skip_special_tokens)
def decode_batch(self,
sequences: List[List[int]],
skip_special_tokens: Optional[bool] = True) -> str:
""" Decode the list of sequences to a list of string sequences
Args:
sequences: List[List[unsigned int]]:
A list of sequence of ids to be decoded
skip_special_tokens: (`optional`) boolean:
Whether to remove all the special tokens from the output strings
Returns:
A list of decoded strings
"""
return self._tokenizer.decode_batch(sequences, skip_special_tokens=skip_special_tokens)
def token_to_id(self, token: str) -> Optional[int]:
""" Convert the given token to its corresponding id
Args:
token: str:
The token to convert
Returns:
The corresponding id if it exists, None otherwise
"""
return self._tokenizer.token_to_id(token)
def id_to_token(self, id: int) -> Optional[str]:
""" Convert the given token id to its corresponding string
Args:
token: id:
The token id to convert
Returns:
The corresponding string if it exists, None otherwise
"""
return self._tokenizer.id_to_token(id)

View File

@ -0,0 +1,27 @@
from tokenizers import Tokenizer, pre_tokenizers, decoders
from tokenizers.tokenizers import BaseTokenizer
from tokenizers.models import BPE
from tokenizers.normalizers import NFKC
from typing import Optional
class ByteLevelBpe(BaseTokenizer):
""" ByteLevelBpe
Represents a Byte-level BPE as introduced by OpenAI with their GPT-2 model
"""
def __init__(self,
vocab_file: Optional[str]=None,
merges_file: Optional[str]=None,
add_prefix_space: boolean=False):
if vocab_file is not None and merges_file is not None:
tokenizer = Tokenizer(BPE.from_files(vocab_file, merges_file))
else:
tokenizer = Tokenizer(BPE.empty())
tokenizer.normalizer = NFKC.new()
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel.new(add_prefix_space=add_prefix_space)
tokenizer.decoder = decoders.ByteLevel.new()
super().__init__(tokenizer)