Add WordLevel trainer

This commit is contained in:
Anthony MOI
2020-10-07 16:46:55 -04:00
committed by Anthony MOI
parent a745321aca
commit 059d43b265
5 changed files with 185 additions and 0 deletions

View File

@ -242,6 +242,69 @@ impl PyWordPieceTrainer {
}
}
/// Capable of training a WorldLevel model
///
/// Args:
/// vocab_size: unsigned int:
/// The size of the final vocabulary, including all tokens and alphabet.
///
/// min_frequency: unsigned int:
/// The minimum frequency a pair should have in order to be merged.
///
/// show_progress: boolean:
/// Whether to show progress bars while training.
///
/// special_tokens: List[Union[str, AddedToken]]:
/// A list of special tokens the model should know of.
///
/// Returns:
/// Trainer
#[pyclass(extends=PyTrainer, name=WordLevelTrainer)]
pub struct PyWordLevelTrainer {}
#[pymethods]
impl PyWordLevelTrainer {
/// Create a new WordLevelTrainer with the given configuration
#[new]
#[args(kwargs = "**")]
pub fn new(kwargs: Option<&PyDict>) -> PyResult<(Self, PyTrainer)> {
let mut trainer = tk::models::wordlevel::WordLevelTrainer::default();
if let Some(kwargs) = kwargs {
for (key, val) in kwargs {
let key: &str = key.extract()?;
match key {
"vocab_size" => trainer.vocab_size = val.extract()?,
"min_frequency" => trainer.min_frequency = val.extract()?,
"show_progress" => trainer.show_progress = val.extract()?,
"special_tokens" => {
trainer.special_tokens = val
.cast_as::<PyList>()?
.into_iter()
.map(|token| {
if let Ok(content) = token.extract::<String>() {
Ok(PyAddedToken::from(content, Some(true)).get_token())
} else if let Ok(mut token) =
token.extract::<PyRefMut<PyAddedToken>>()
{
token.is_special_token = true;
Ok(token.get_token())
} else {
Err(exceptions::PyTypeError::new_err(
"special_tokens must be a List[Union[str, AddedToken]]",
))
}
})
.collect::<PyResult<Vec<_>>>()?
}
_ => println!("Ignored unknown kwargs option {}", key),
}
}
}
Ok((PyWordLevelTrainer {}, PyTrainer::new(trainer.into())))
}
}
/// Capable of training a Unigram model
///
/// Args: