mirror of
https://github.com/mii443/tokenizers.git
synced 2025-08-22 16:25:30 +00:00
Add WordLevel trainer
This commit is contained in:
@ -4,4 +4,5 @@ from .. import trainers
|
||||
Trainer = trainers.Trainer
|
||||
BpeTrainer = trainers.BpeTrainer
|
||||
UnigramTrainer = trainers.UnigramTrainer
|
||||
WordLevelTrainer = trainers.WordLevelTrainer
|
||||
WordPieceTrainer = trainers.WordPieceTrainer
|
||||
|
@ -44,6 +44,7 @@ fn trainers(_py: Python, m: &PyModule) -> PyResult<()> {
|
||||
m.add_class::<trainers::PyTrainer>()?;
|
||||
m.add_class::<trainers::PyBpeTrainer>()?;
|
||||
m.add_class::<trainers::PyWordPieceTrainer>()?;
|
||||
m.add_class::<trainers::PyWordLevelTrainer>()?;
|
||||
m.add_class::<trainers::PyUnigramTrainer>()?;
|
||||
Ok(())
|
||||
}
|
||||
|
@ -242,6 +242,69 @@ impl PyWordPieceTrainer {
|
||||
}
|
||||
}
|
||||
|
||||
/// Capable of training a WorldLevel model
|
||||
///
|
||||
/// Args:
|
||||
/// vocab_size: unsigned int:
|
||||
/// The size of the final vocabulary, including all tokens and alphabet.
|
||||
///
|
||||
/// min_frequency: unsigned int:
|
||||
/// The minimum frequency a pair should have in order to be merged.
|
||||
///
|
||||
/// show_progress: boolean:
|
||||
/// Whether to show progress bars while training.
|
||||
///
|
||||
/// special_tokens: List[Union[str, AddedToken]]:
|
||||
/// A list of special tokens the model should know of.
|
||||
///
|
||||
/// Returns:
|
||||
/// Trainer
|
||||
#[pyclass(extends=PyTrainer, name=WordLevelTrainer)]
|
||||
pub struct PyWordLevelTrainer {}
|
||||
#[pymethods]
|
||||
impl PyWordLevelTrainer {
|
||||
/// Create a new WordLevelTrainer with the given configuration
|
||||
#[new]
|
||||
#[args(kwargs = "**")]
|
||||
pub fn new(kwargs: Option<&PyDict>) -> PyResult<(Self, PyTrainer)> {
|
||||
let mut trainer = tk::models::wordlevel::WordLevelTrainer::default();
|
||||
|
||||
if let Some(kwargs) = kwargs {
|
||||
for (key, val) in kwargs {
|
||||
let key: &str = key.extract()?;
|
||||
match key {
|
||||
"vocab_size" => trainer.vocab_size = val.extract()?,
|
||||
"min_frequency" => trainer.min_frequency = val.extract()?,
|
||||
"show_progress" => trainer.show_progress = val.extract()?,
|
||||
"special_tokens" => {
|
||||
trainer.special_tokens = val
|
||||
.cast_as::<PyList>()?
|
||||
.into_iter()
|
||||
.map(|token| {
|
||||
if let Ok(content) = token.extract::<String>() {
|
||||
Ok(PyAddedToken::from(content, Some(true)).get_token())
|
||||
} else if let Ok(mut token) =
|
||||
token.extract::<PyRefMut<PyAddedToken>>()
|
||||
{
|
||||
token.is_special_token = true;
|
||||
Ok(token.get_token())
|
||||
} else {
|
||||
Err(exceptions::PyTypeError::new_err(
|
||||
"special_tokens must be a List[Union[str, AddedToken]]",
|
||||
))
|
||||
}
|
||||
})
|
||||
.collect::<PyResult<Vec<_>>>()?
|
||||
}
|
||||
_ => println!("Ignored unknown kwargs option {}", key),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ok((PyWordLevelTrainer {}, PyTrainer::new(trainer.into())))
|
||||
}
|
||||
}
|
||||
|
||||
/// Capable of training a Unigram model
|
||||
///
|
||||
/// Args:
|
||||
|
@ -8,6 +8,10 @@ use std::io::{BufReader, Read, Write};
|
||||
use std::path::{Path, PathBuf};
|
||||
|
||||
mod serialization;
|
||||
mod trainer;
|
||||
|
||||
// Re-export
|
||||
pub use trainer::*;
|
||||
|
||||
type Vocab = HashMap<String, u32>;
|
||||
|
||||
|
116
tokenizers/src/models/wordlevel/trainer.rs
Normal file
116
tokenizers/src/models/wordlevel/trainer.rs
Normal file
@ -0,0 +1,116 @@
|
||||
use super::WordLevel;
|
||||
use crate::{AddedToken, Result, Trainer};
|
||||
use std::collections::HashMap;
|
||||
|
||||
pub struct WordLevelTrainer {
|
||||
/// The minimum frequency a word must have to be part of the vocabulary
|
||||
pub min_frequency: u32,
|
||||
/// The target vocabulary size
|
||||
pub vocab_size: usize,
|
||||
/// Whether to show progress while training
|
||||
pub show_progress: bool,
|
||||
/// A list of special tokens that the model should know of
|
||||
pub special_tokens: Vec<AddedToken>,
|
||||
}
|
||||
|
||||
impl Default for WordLevelTrainer {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
min_frequency: 0,
|
||||
vocab_size: 30_000,
|
||||
show_progress: true,
|
||||
special_tokens: vec![],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl WordLevelTrainer {
|
||||
fn train(&self, word_counts: HashMap<String, u32>) -> Result<(WordLevel, Vec<AddedToken>)> {
|
||||
let mut ordered_counts = word_counts.into_iter().collect::<Vec<_>>();
|
||||
ordered_counts.sort_by_key(|(_, n)| std::cmp::Reverse(*n));
|
||||
let word_level = WordLevel::builder()
|
||||
.vocab(
|
||||
self.special_tokens
|
||||
.iter()
|
||||
.map(|token| token.content.clone())
|
||||
.chain(
|
||||
ordered_counts
|
||||
.into_iter()
|
||||
.filter(|(_, n)| *n >= self.min_frequency)
|
||||
.map(|(w, _)| w),
|
||||
)
|
||||
.take(self.vocab_size)
|
||||
.enumerate()
|
||||
.map(|(i, w)| (w, i as u32))
|
||||
.collect(),
|
||||
)
|
||||
.build();
|
||||
|
||||
Ok((word_level, self.special_tokens.clone()))
|
||||
}
|
||||
}
|
||||
|
||||
impl Trainer for WordLevelTrainer {
|
||||
type Model = WordLevel;
|
||||
|
||||
/// Train a WordLevel model
|
||||
fn train(&self, word_counts: HashMap<String, u32>) -> Result<(WordLevel, Vec<AddedToken>)> {
|
||||
self.train(word_counts)
|
||||
}
|
||||
|
||||
/// Whether we should show progress
|
||||
fn should_show_progress(&self) -> bool {
|
||||
self.show_progress
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_train() {
|
||||
let word_counts: HashMap<String, u32> = [
|
||||
("the".into(), 25),
|
||||
("roses".into(), 22),
|
||||
("are".into(), 24),
|
||||
("red".into(), 12),
|
||||
("voilets".into(), 10),
|
||||
("blue".into(), 16),
|
||||
]
|
||||
.iter()
|
||||
.cloned()
|
||||
.collect();
|
||||
|
||||
let mut trainer = WordLevelTrainer::default();
|
||||
trainer.vocab_size = 5;
|
||||
|
||||
let (model, _) = trainer.train(word_counts.clone()).unwrap();
|
||||
let expected_vocab: HashMap<String, u32> = [
|
||||
("the".into(), 0),
|
||||
("are".into(), 1),
|
||||
("roses".into(), 2),
|
||||
("blue".into(), 3),
|
||||
("red".into(), 4),
|
||||
]
|
||||
.iter()
|
||||
.cloned()
|
||||
.collect();
|
||||
assert_eq!(model.vocab, expected_vocab);
|
||||
|
||||
// If we specify a min_frequency
|
||||
trainer.min_frequency = 15;
|
||||
let (model, _) = trainer.train(word_counts).unwrap();
|
||||
let expected_vocab: HashMap<String, u32> = [
|
||||
("the".into(), 0),
|
||||
("are".into(), 1),
|
||||
("roses".into(), 2),
|
||||
("blue".into(), 3),
|
||||
]
|
||||
.iter()
|
||||
.cloned()
|
||||
.collect();
|
||||
|
||||
assert_eq!(model.vocab, expected_vocab);
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user