Files
Weil-Pairing/Miller.cpp
2015-05-15 02:32:27 +08:00

322 lines
5.3 KiB
C++

#include"elliptic.h"
FPOINT * newfpoint(int x, int y)
{
FPOINT * result = (FPOINT *)malloc(sizeof(fpoint));
result->x = x;
result->y = y;
return result;
}
POINT * newpoint(int a, int b, int c, int d)
{
POINT * result = (POINT *)malloc(sizeof(point));
result->x = newfpoint(a,b);
result->y = newfpoint(c,d);
return result;
}
CURVE * newcurve(FPOINT * A, FPOINT * B)
{
CURVE * result = (CURVE *)malloc(sizeof(curve));
result->A = A;
result->B = B;
return result;
}
void freepoint(POINT * a)
{
free(a->x);
free(a->y);
}
//absolute value modulo p
int ABS(int a, int p)
{
return (a>=0)?a%p:(p-(-a)%p)%p;
}
//extended euclid algorithm
int gcdEx(int a, int b, int *x, int *y)
{
if(b==0){
*x = 1,*y = 0;
return a;
}
else{
int r = gcdEx(b, a%b, x, y);
int t = *x;
*x = *y;
*y = t - a/b * *y;
return r;
}
}
//modulo inverse
int inver(int a, int p)
{
int s,t;
if(gcdEx(a,p,&s,&t)!=1)return 0;
return ABS(s,p);
}
//field element equlity judgement
bool equl(FPOINT * a, FPOINT * b)
{
if(a->x == b->x && a->y == b->y)return true;
return false;
}
bool equln(FPOINT * a, FPOINT * b, int p)
{
if(a->x == ABS(-b->x,p)&&a->y == ABS(-b->y,p))return true;
return false;
}
bool pequl(POINT * a, POINT * b)
{
return equl(a->x,b->x)&&equl(a->y,b->y);
}
FPOINT * fneg(FPOINT * a, int p, FPOINT * result)
{
result->x = ABS(-a->x,p);
result->y = ABS(-a->y,p);
return result;
}
//field elements addition
FPOINT * fadd(FPOINT * a, FPOINT * b, int p, FPOINT * result)
{
int x = ABS(a->x + b->x,p);
int y = ABS(a->y + b->y,p);
result->x = x;
result->y = y;
return result;
}
//field elements minus
FPOINT * fminus(FPOINT * a, FPOINT * b, int p, FPOINT * result)
{
int x = ABS(a->x - b->x,p);
int y = ABS(a->y - b->y,p);
result->x = x;
result->y = y;
return result;
}
//field elements multiplication
FPOINT * fmulti(FPOINT * a, FPOINT * b, int p, FPOINT * result)
{
int x = ABS(a->y*b->x + a->x*b->y,p);
int y = ABS(a->y*b->y - a->x*b->x,p);
result->x = x;
result->y = y;
return result;
}
//field assignment
FPOINT * assign(FPOINT * a, FPOINT * b)
{
a->x = b->x;
a->y = b->y;
return a;
}
//field element expontinal
FPOINT * fpower(FPOINT * a, int n, int p, FPOINT * result)
{
n = n%(p*p - 1);
FPOINT * DB = newfpoint(0,0);
assign(DB,a);
assign(result,ONE);
while(n > 0){
if(n&1)fmulti(DB,result,p,result);
fmulti(DB,DB,p,DB);
n >>= 1;
}
free(DB);
return result;
}
//field element inverse
FPOINT * inverse(FPOINT * a, int p, FPOINT * result)
{
int x = inver(ABS(-a->y*a->y*inver(a->x,p)-a->x,p),p);
int y = ABS(-a->y*inver(a->x,p)*x,p);
result->x = x;
result->y = y;
return result;
}
//multiply by number
FPOINT * fnmulti(FPOINT * a, int b, int p, FPOINT * result)
{
result->x = ABS(a->x*b,p);
result->y = ABS(a->y*b,p);
return result;
}
POINT * passign(POINT * a, POINT * b)
{
assign(a->x,b->x);
assign(a->y,b->y);
return a;
}
bool testpoint(POINT * p, CURVE * c, int p1)
{
if(pequl(p,O))return true;
FPOINT * x = newfpoint(0,0);
FPOINT * y = newfpoint(0,0);
assign(x,p->x);
fadd(fadd(fpower(x,3,p1,x),fmulti(c->A,p->x,p1,y),p1,x),c->B,p1,x);
fpower(p->y,2,p1,y);
return equl(x,y);
}
void showpoint(POINT * p)
{
printf("\n[(%d,%d),(%d,%d)]\n",p->x->x,p->x->y,p->y->x,p->y->y);
}
POINT * pneg(POINT * a, int p, POINT * result)
{
assign(result->x,a->x);
fneg(a->y,p,result->y);
return result;
}
//curve point additon
POINT * add(POINT * p1, POINT * p2, CURVE * c, int p, POINT * result)
{
if(pequl(p1,O))return passign(result,p2);
if(pequl(p2,O))return passign(result,p1);
if(equl(p1->x,p2->x)&&equln(p1->y,p2->y,p)){
return passign(result,O);
}
FPOINT * x, * y, *lambda;
x = newfpoint(0,0);
y = newfpoint(0,0);
lambda = (FPOINT *)malloc(sizeof(fpoint));
if(equl(p1->x,p2->x)){
fadd(fnmulti(fpower(p1->x,2,p,lambda),3,p,lambda),c->A,p,lambda);
fmulti(lambda,inverse(fnmulti(p1->y,2,p,x),p,x),p,lambda);
}else{
fminus(p2->y,p1->y,p,lambda);
fmulti(lambda,inverse(fminus(p2->x,p1->x,p,x),p,x),p,lambda);
}
fminus(fminus(fpower(lambda,2,p,x),p1->x,p,x),p2->x,p,x);
fminus(fmulti(fminus(p1->x,x,p,y),lambda,p,y),p1->y,p,y);
assign(result->x,x);
assign(result->y,y);
free(lambda);
free(x);
free(y);
return result;
}
POINT * minus(POINT * p1, POINT * p2, CURVE * c, int p, POINT * result)
{
POINT * temp = newpoint(0,0,0,0);
add(pneg(p2,p,temp),p1,c,p,result);
freepoint(temp);
return result;
}
//power of points addition
POINT * ppower(POINT * a, int n, CURVE * c, int p, POINT * result)
{
POINT * DB;
DB = newpoint(0,0,0,0);
passign(DB,a);
passign(result,O);
while(n > 0){
if(n&1)add(DB,result,c,p,result);
add(DB,DB,c,p,DB);
n >>= 1;
}
freepoint(DB);
return result;
}
FPOINT * miller(POINT * a, POINT * b, CURVE * c, int p)
{
FPOINT * result = (FPOINT *)malloc(sizeof(fpoint));
//TODO
return result;
}
int main()
{
ONE = newfpoint(0,1);
ZERO = newfpoint(0,0);
O = newpoint(-1,-1,-1,-1);
int p=5;
FPOINT * test = newfpoint(0,3);
FPOINT * test1 = newfpoint(0,7);
CURVE * c = newcurve(newfpoint(0,0),newfpoint(0,1));
POINT * P = newpoint(0,0,0,1);
//add(P,P,c,p,P);
ppower(P,100,c,p,P);
//minus(P,P,c,p,P);
//pneg(P,p,P);
//passign(P,O);
printf("%d\n",testpoint(P,c,p));
showpoint(P);
return 0;
}