#include"elliptic.h" FPOINT * newfpoint(int x, int y) { FPOINT * result = (FPOINT *)malloc(sizeof(fpoint)); result->x = x; result->y = y; return result; } POINT * newpoint(int a, int b, int c, int d) { POINT * result = (POINT *)malloc(sizeof(point)); result->x = newfpoint(a,b); result->y = newfpoint(c,d); return result; } CURVE * newcurve(FPOINT * A, FPOINT * B) { CURVE * result = (CURVE *)malloc(sizeof(curve)); result->A = A; result->B = B; return result; } void freepoint(POINT * a) { free(a->x); free(a->y); } //absolute value modulo p int ABS(int a, int p) { return (a>=0)?a%p:(p-(-a)%p)%p; } //extended euclid algorithm int gcdEx(int a, int b, int *x, int *y) { if(b==0){ *x = 1,*y = 0; return a; } else{ int r = gcdEx(b, a%b, x, y); int t = *x; *x = *y; *y = t - a/b * *y; return r; } } //modulo inverse int inver(int a, int p) { int s,t; if(gcdEx(a,p,&s,&t)!=1)return 0; return ABS(s,p); } //field element equlity judgement bool equl(FPOINT * a, FPOINT * b) { if(a->x == b->x && a->y == b->y)return true; return false; } bool equln(FPOINT * a, FPOINT * b, int p) { if(a->x == ABS(-b->x,p)&&a->y == ABS(-b->y,p))return true; return false; } bool pequl(POINT * a, POINT * b) { return equl(a->x,b->x)&&equl(a->y,b->y); } FPOINT * fneg(FPOINT * a, int p, FPOINT * result) { result->x = ABS(-a->x,p); result->y = ABS(-a->y,p); return result; } //field elements addition FPOINT * fadd(FPOINT * a, FPOINT * b, int p, FPOINT * result) { int x = ABS(a->x + b->x,p); int y = ABS(a->y + b->y,p); result->x = x; result->y = y; return result; } //field elements minus FPOINT * fminus(FPOINT * a, FPOINT * b, int p, FPOINT * result) { int x = ABS(a->x - b->x,p); int y = ABS(a->y - b->y,p); result->x = x; result->y = y; return result; } //field elements multiplication FPOINT * fmulti(FPOINT * a, FPOINT * b, int p, FPOINT * result) { int x = ABS(a->y*b->x + a->x*b->y,p); int y = ABS(a->y*b->y - a->x*b->x,p); result->x = x; result->y = y; return result; } //field assignment FPOINT * assign(FPOINT * a, FPOINT * b) { a->x = b->x; a->y = b->y; return a; } //field element expontinal FPOINT * fpower(FPOINT * a, int n, int p, FPOINT * result) { n = n%(p*p - 1); FPOINT * DB = newfpoint(0,0); assign(DB,a); assign(result,ONE); while(n > 0){ if(n&1)fmulti(DB,result,p,result); fmulti(DB,DB,p,DB); n >>= 1; } free(DB); return result; } //field element inverse FPOINT * inverse(FPOINT * a, int p, FPOINT * result) { int x = inver(ABS(-a->y*a->y*inver(a->x,p)-a->x,p),p); int y = ABS(-a->y*inver(a->x,p)*x,p); result->x = x; result->y = y; return result; } //multiply by number FPOINT * fnmulti(FPOINT * a, int b, int p, FPOINT * result) { result->x = ABS(a->x*b,p); result->y = ABS(a->y*b,p); return result; } POINT * passign(POINT * a, POINT * b) { assign(a->x,b->x); assign(a->y,b->y); return a; } bool testpoint(POINT * p, CURVE * c, int p1) { if(pequl(p,O))return true; FPOINT * x = newfpoint(0,0); FPOINT * y = newfpoint(0,0); assign(x,p->x); fadd(fadd(fpower(x,3,p1,x),fmulti(c->A,p->x,p1,y),p1,x),c->B,p1,x); fpower(p->y,2,p1,y); return equl(x,y); } void showpoint(POINT * p) { printf("\n[(%d,%d),(%d,%d)]\n",p->x->x,p->x->y,p->y->x,p->y->y); } POINT * pneg(POINT * a, int p, POINT * result) { assign(result->x,a->x); fneg(a->y,p,result->y); return result; } //curve point additon POINT * add(POINT * p1, POINT * p2, CURVE * c, int p, POINT * result) { if(pequl(p1,O))return passign(result,p2); if(pequl(p2,O))return passign(result,p1); if(equl(p1->x,p2->x)&&equln(p1->y,p2->y,p)){ return passign(result,O); } FPOINT * x, * y, *lambda; x = newfpoint(0,0); y = newfpoint(0,0); lambda = (FPOINT *)malloc(sizeof(fpoint)); if(equl(p1->x,p2->x)){ fadd(fnmulti(fpower(p1->x,2,p,lambda),3,p,lambda),c->A,p,lambda); fmulti(lambda,inverse(fnmulti(p1->y,2,p,x),p,x),p,lambda); }else{ fminus(p2->y,p1->y,p,lambda); fmulti(lambda,inverse(fminus(p2->x,p1->x,p,x),p,x),p,lambda); } fminus(fminus(fpower(lambda,2,p,x),p1->x,p,x),p2->x,p,x); fminus(fmulti(fminus(p1->x,x,p,y),lambda,p,y),p1->y,p,y); assign(result->x,x); assign(result->y,y); free(lambda); free(x); free(y); return result; } POINT * minus(POINT * p1, POINT * p2, CURVE * c, int p, POINT * result) { POINT * temp = newpoint(0,0,0,0); add(pneg(p2,p,temp),p1,c,p,result); freepoint(temp); return result; } //power of points addition POINT * ppower(POINT * a, int n, CURVE * c, int p, POINT * result) { POINT * DB; DB = newpoint(0,0,0,0); passign(DB,a); passign(result,O); while(n > 0){ if(n&1)add(DB,result,c,p,result); add(DB,DB,c,p,DB); n >>= 1; } freepoint(DB); return result; } FPOINT * miller(POINT * a, POINT * b, CURVE * c, int p) { FPOINT * result = (FPOINT *)malloc(sizeof(fpoint)); //TODO return result; } int main() { ONE = newfpoint(0,1); ZERO = newfpoint(0,0); O = newpoint(-1,-1,-1,-1); int p=5; FPOINT * test = newfpoint(0,3); FPOINT * test1 = newfpoint(0,7); CURVE * c = newcurve(newfpoint(0,0),newfpoint(0,1)); POINT * P = newpoint(0,0,0,1); //add(P,P,c,p,P); ppower(P,100,c,p,P); //minus(P,P,c,p,P); //pneg(P,p,P); //passign(P,O); printf("%d\n",testpoint(P,c,p)); showpoint(P); return 0; }