Files
wasmer/lib/api/src/externals/function.rs
Ivan Enderlin ad7c618193 !temp Remove impl of WasmTypeList for Infallible.
I don't think it is necessary anymore.
2020-06-22 10:48:15 +02:00

899 lines
32 KiB
Rust

use crate::exports::{ExportError, Exportable};
use crate::externals::Extern;
use crate::store::Store;
use crate::types::Val;
use crate::FunctionType;
use crate::NativeFunc;
use crate::RuntimeError;
pub use inner::{HostFunction, WasmTypeList};
use inner::{WithEnv, WithoutEnv};
use std::cell::RefCell;
use std::cmp::max;
use wasmer_runtime::{
raise_user_trap, resume_panic, wasmer_call_trampoline, Export, ExportFunction,
VMCallerCheckedAnyfunc, VMContext, VMDynamicFunctionContext, VMFunctionBody, VMFunctionKind,
VMTrampoline,
};
/// A function defined in the Wasm module
#[derive(Clone, PartialEq)]
pub struct WasmFunctionDefinition {
// The trampoline to do the call
pub(crate) trampoline: VMTrampoline,
}
/// A function defined in the Host
#[derive(Clone, PartialEq)]
pub struct HostFunctionDefinition {
/// If the host function has a custom environment attached
pub(crate) has_env: bool,
}
/// The inner helper
#[derive(Clone, PartialEq)]
pub enum FunctionDefinition {
/// A function defined in the Wasm side
Wasm(WasmFunctionDefinition),
/// A function defined in the Host side
Host(HostFunctionDefinition),
}
/// A WebAssembly `function`.
#[derive(Clone, PartialEq)]
pub struct Function {
pub(crate) store: Store,
pub(crate) definition: FunctionDefinition,
// If the Function is owned by the Store, not the instance
pub(crate) owned_by_store: bool,
pub(crate) exported: ExportFunction,
}
impl Function {
/// Creates a new `Func` with the given parameters.
///
/// * `store` - a global cache to store information in
/// * `func` - the function.
pub fn new<F, Args, Rets, Env>(store: &Store, func: F) -> Self
where
F: HostFunction<Args, Rets, WithoutEnv, Env>,
Args: WasmTypeList,
Rets: WasmTypeList,
Env: Sized + 'static,
{
let func: inner::Func<Args, Rets> = inner::Func::new(func);
let address = func.address() as *const VMFunctionBody;
let vmctx = std::ptr::null_mut() as *mut _ as *mut VMContext;
let signature = func.ty();
Self {
store: store.clone(),
owned_by_store: true,
definition: FunctionDefinition::Host(HostFunctionDefinition { has_env: false }),
exported: ExportFunction {
address,
vmctx,
signature,
kind: VMFunctionKind::Static,
},
}
}
#[allow(clippy::cast_ptr_alignment)]
pub fn new_dynamic<F>(store: &Store, ty: &FunctionType, func: F) -> Self
where
F: Fn(&[Val]) -> Result<Vec<Val>, RuntimeError> + 'static,
{
let dynamic_ctx = VMDynamicFunctionContext::from_context(VMDynamicFunctionWithoutEnv {
func: Box::new(func),
function_type: ty.clone(),
});
// We don't yet have the address with the Wasm ABI signature.
// The engine linker will replace the address with one pointing to a
// generated dynamic trampoline.
let address = std::ptr::null() as *const VMFunctionBody;
let vmctx = Box::into_raw(Box::new(dynamic_ctx)) as *mut VMContext;
Self {
store: store.clone(),
owned_by_store: true,
definition: FunctionDefinition::Host(HostFunctionDefinition { has_env: false }),
exported: ExportFunction {
address,
kind: VMFunctionKind::Dynamic,
vmctx,
signature: ty.clone(),
},
}
}
#[allow(clippy::cast_ptr_alignment)]
pub fn new_dynamic_env<F, Env>(store: &Store, ty: &FunctionType, env: Env, func: F) -> Self
where
F: Fn(&mut Env, &[Val]) -> Result<Vec<Val>, RuntimeError> + 'static,
Env: Sized + 'static,
{
let dynamic_ctx = VMDynamicFunctionContext::from_context(VMDynamicFunctionWithEnv {
env: RefCell::new(env),
func: Box::new(func),
function_type: ty.clone(),
});
// We don't yet have the address with the Wasm ABI signature.
// The engine linker will replace the address with one pointing to a
// generated dynamic trampoline.
let address = std::ptr::null() as *const VMFunctionBody;
let vmctx = Box::into_raw(Box::new(dynamic_ctx)) as *mut VMContext;
Self {
store: store.clone(),
owned_by_store: true,
definition: FunctionDefinition::Host(HostFunctionDefinition { has_env: true }),
exported: ExportFunction {
address,
kind: VMFunctionKind::Dynamic,
vmctx,
signature: ty.clone(),
},
}
}
/// Creates a new `Func` with the given parameters.
///
/// * `store` - a global cache to store information in.
/// * `env` - the function environment.
/// * `func` - the function.
pub fn new_env<F, Args, Rets, Env>(store: &Store, env: Env, func: F) -> Self
where
F: HostFunction<Args, Rets, WithEnv, Env>,
Args: WasmTypeList,
Rets: WasmTypeList,
Env: Sized + 'static,
{
let func: inner::Func<Args, Rets> = inner::Func::new(func);
let address = func.address() as *const VMFunctionBody;
// TODO: We need to refactor the Function context.
// Right now is structured as it's always a `VMContext`. However, only
// Wasm-defined functions have a `VMContext`.
// In the case of Host-defined functions `VMContext` is whatever environment
// the user want to attach to the function.
let box_env = Box::new(env);
let vmctx = Box::into_raw(box_env) as *mut _ as *mut VMContext;
let signature = func.ty();
Self {
store: store.clone(),
owned_by_store: true,
definition: FunctionDefinition::Host(HostFunctionDefinition { has_env: true }),
exported: ExportFunction {
address,
kind: VMFunctionKind::Static,
vmctx,
signature,
},
}
}
/// Returns the underlying type of this function.
pub fn ty(&self) -> &FunctionType {
&self.exported.signature
}
pub fn store(&self) -> &Store {
&self.store
}
fn call_wasm(
&self,
func: &WasmFunctionDefinition,
params: &[Val],
results: &mut [Val],
) -> Result<(), RuntimeError> {
let format_types_for_error_message = |items: &[Val]| {
items
.iter()
.map(|param| param.ty().to_string())
.collect::<Vec<String>>()
.join(", ")
};
let signature = self.ty();
if signature.params().len() != params.len() {
return Err(RuntimeError::new(format!(
"Parameters of type [{}] did not match signature {}",
format_types_for_error_message(params),
&signature
)));
}
if signature.results().len() != results.len() {
return Err(RuntimeError::new(format!(
"Results of type [{}] did not match signature {}",
format_types_for_error_message(results),
&signature,
)));
}
let mut values_vec = vec![0; max(params.len(), results.len())];
// Store the argument values into `values_vec`.
let param_tys = signature.params().iter();
for ((arg, slot), ty) in params.iter().zip(&mut values_vec).zip(param_tys) {
if arg.ty() != *ty {
let param_types = format_types_for_error_message(params);
return Err(RuntimeError::new(format!(
"Parameters of type [{}] did not match signature {}",
param_types, &signature,
)));
}
unsafe {
arg.write_value_to(slot);
}
}
// Call the trampoline.
if let Err(error) = unsafe {
wasmer_call_trampoline(
self.exported.vmctx,
func.trampoline,
self.exported.address,
values_vec.as_mut_ptr() as *mut u8,
)
} {
return Err(RuntimeError::from_trap(error));
}
// Load the return values out of `values_vec`.
for (index, &value_type) in signature.results().iter().enumerate() {
unsafe {
let ptr = values_vec.as_ptr().add(index);
results[index] = Val::read_value_from(ptr, value_type);
}
}
Ok(())
}
/// Returns the number of parameters that this function takes.
pub fn param_arity(&self) -> usize {
self.ty().params().len()
}
/// Returns the number of results this function produces.
pub fn result_arity(&self) -> usize {
self.ty().results().len()
}
/// Call the [`Function`] function.
///
/// Depending on where the Function is defined, it will call it.
/// 1. If the function is defined inside a WebAssembly, it will call the trampoline
/// for the function signature.
/// 2. If the function is defined in the host (in a native way), it will
/// call the trampoline.
pub fn call(&self, params: &[Val]) -> Result<Box<[Val]>, RuntimeError> {
let mut results = vec![Val::null(); self.result_arity()];
match &self.definition {
FunctionDefinition::Wasm(wasm) => {
self.call_wasm(&wasm, params, &mut results)?;
}
_ => unimplemented!("The function definition isn't supported for the moment"),
}
Ok(results.into_boxed_slice())
}
pub(crate) fn from_export(store: &Store, wasmer_export: ExportFunction) -> Self {
let vmsignature = store.engine().register_signature(&wasmer_export.signature);
let trampoline = store
.engine()
.function_call_trampoline(vmsignature)
.expect("Can't get call trampoline for the function");
Self {
store: store.clone(),
owned_by_store: false,
definition: FunctionDefinition::Wasm(WasmFunctionDefinition { trampoline }),
exported: wasmer_export,
}
}
pub(crate) fn checked_anyfunc(&self) -> VMCallerCheckedAnyfunc {
let vmsignature = self
.store
.engine()
.register_signature(&self.exported.signature);
VMCallerCheckedAnyfunc {
func_ptr: self.exported.address,
type_index: vmsignature,
vmctx: self.exported.vmctx,
}
}
pub fn native<'a, Args, Rets>(&self) -> Option<NativeFunc<'a, Args, Rets>>
where
Args: WasmTypeList,
Rets: WasmTypeList,
{
// type check
if self.exported.signature.params() != Args::wasm_types() {
// todo: error param types don't match
return None;
}
if self.exported.signature.results() != Rets::wasm_types() {
// todo: error result types don't match
return None;
}
Some(NativeFunc::new(
self.store.clone(),
self.exported.address,
self.exported.vmctx,
self.exported.kind,
self.definition.clone(),
))
}
}
impl<'a> Exportable<'a> for Function {
fn to_export(&self) -> Export {
self.exported.clone().into()
}
fn get_self_from_extern(_extern: &'a Extern) -> Result<&'a Self, ExportError> {
match _extern {
Extern::Function(func) => Ok(func),
_ => Err(ExportError::IncompatibleType),
}
}
}
impl std::fmt::Debug for Function {
fn fmt(&self, _f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
Ok(())
}
}
/// This trait is one that all dynamic functions must fulfill.
pub(crate) trait VMDynamicFunction {
fn call(&self, args: &[Val]) -> Result<Vec<Val>, RuntimeError>;
fn function_type(&self) -> &FunctionType;
}
pub(crate) struct VMDynamicFunctionWithoutEnv {
#[allow(clippy::type_complexity)]
func: Box<dyn Fn(&[Val]) -> Result<Vec<Val>, RuntimeError> + 'static>,
function_type: FunctionType,
}
impl VMDynamicFunction for VMDynamicFunctionWithoutEnv {
fn call(&self, args: &[Val]) -> Result<Vec<Val>, RuntimeError> {
(*self.func)(&args)
}
fn function_type(&self) -> &FunctionType {
&self.function_type
}
}
pub(crate) struct VMDynamicFunctionWithEnv<Env>
where
Env: Sized + 'static,
{
function_type: FunctionType,
#[allow(clippy::type_complexity)]
func: Box<dyn Fn(&mut Env, &[Val]) -> Result<Vec<Val>, RuntimeError> + 'static>,
env: RefCell<Env>,
}
impl<Env> VMDynamicFunction for VMDynamicFunctionWithEnv<Env>
where
Env: Sized + 'static,
{
fn call(&self, args: &[Val]) -> Result<Vec<Val>, RuntimeError> {
// TODO: the `&mut *self.env.as_ptr()` is likely invoking some "mild"
// undefined behavior due to how it's used in the static fn call
unsafe { (*self.func)(&mut *self.env.as_ptr(), &args) }
}
fn function_type(&self) -> &FunctionType {
&self.function_type
}
}
trait VMDynamicFunctionCall<T: VMDynamicFunction> {
fn from_context(ctx: T) -> Self;
fn address_ptr() -> *const VMFunctionBody;
unsafe fn func_wrapper(&self, values_vec: *mut i128);
}
impl<T: VMDynamicFunction> VMDynamicFunctionCall<T> for VMDynamicFunctionContext<T> {
fn from_context(ctx: T) -> Self {
Self {
address: Self::address_ptr(),
ctx,
}
}
fn address_ptr() -> *const VMFunctionBody {
Self::func_wrapper as *const () as *const VMFunctionBody
}
// This function wraps our func, to make it compatible with the
// reverse trampoline signature
unsafe fn func_wrapper(
// Note: we use the trick that the first param to this function is the `VMDynamicFunctionContext`
// itself, so rather than doing `dynamic_ctx: &VMDynamicFunctionContext<T>`, we simplify it a bit
&self,
values_vec: *mut i128,
) {
use std::panic::{self, AssertUnwindSafe};
let result = panic::catch_unwind(AssertUnwindSafe(|| {
let func_ty = self.ctx.function_type();
let mut args = Vec::with_capacity(func_ty.params().len());
for (i, ty) in func_ty.params().iter().enumerate() {
args.push(Val::read_value_from(values_vec.add(i), *ty));
}
let returns = self.ctx.call(&args)?;
// We need to dynamically check that the returns
// match the expected types, as well as expected length.
let return_types = returns.iter().map(|ret| ret.ty()).collect::<Vec<_>>();
if return_types != func_ty.results() {
return Err(RuntimeError::new(format!(
"Dynamic function returned wrong signature. Expected {:?} but got {:?}",
func_ty.results(),
return_types
)));
}
for (i, ret) in returns.iter().enumerate() {
ret.write_value_to(values_vec.add(i));
}
Ok(())
}));
match result {
Ok(Ok(())) => {}
Ok(Err(trap)) => raise_user_trap(Box::new(trap)),
Err(panic) => resume_panic(panic),
}
}
}
mod inner {
use std::convert::Infallible;
use std::error::Error;
use std::marker::PhantomData;
use std::panic::{self, AssertUnwindSafe};
use wasm_common::{FunctionType, NativeWasmType, Type, WasmExternType};
use wasmer_runtime::{raise_user_trap, resume_panic};
/// Represents a list of WebAssembly values.
pub trait WasmTypeList {
/// CStruct type.
type CStruct;
/// Array of return values.
type Array: AsMut<[i128]>;
/// Construct `Self` based on an array of returned values.
fn from_array(array: Self::Array) -> Self;
/// Transforms Rust values into an Array
fn into_array(self) -> Self::Array;
/// Generates an empty array that will hold the returned values of
/// the WebAssembly function.
fn empty_array() -> Self::Array;
/// Transforms C values into Rust values.
fn from_c_struct(c_struct: Self::CStruct) -> Self;
/// Transforms Rust values into C values.
fn into_c_struct(self) -> Self::CStruct;
/// Get types of the current values.
fn wasm_types() -> &'static [Type];
}
/// Represents a TrapEarly type.
pub trait TrapEarly<Rets>
where
Rets: WasmTypeList,
{
/// The error type for this trait.
type Error: Error + Sync + Send + 'static;
/// Get returns or error result.
fn report(self) -> Result<Rets, Self::Error>;
}
impl<Rets> TrapEarly<Rets> for Rets
where
Rets: WasmTypeList,
{
type Error = Infallible;
fn report(self) -> Result<Self, Infallible> {
Ok(self)
}
}
impl<Rets, E> TrapEarly<Rets> for Result<Rets, E>
where
Rets: WasmTypeList,
E: Error + Sync + Send + 'static,
{
type Error = E;
fn report(self) -> Self {
self
}
}
/// Empty trait to specify the kind of `HostFunction`: With or
/// without a `vm::Ctx` argument. See the `ExplicitVmCtx` and the
/// `ImplicitVmCtx` structures.
///
/// This trait is never aimed to be used by a user. It is used by the
/// trait system to automatically generate an appropriate `wrap`
/// function.
#[doc(hidden)]
pub trait HostFunctionKind {}
/// An empty struct to help Rust typing to determine
/// when a `HostFunction` doesn't take an Environment
pub struct WithEnv {}
impl HostFunctionKind for WithEnv {}
/// An empty struct to help Rust typing to determine
/// when a `HostFunction` takes an Environment
pub struct WithoutEnv {}
impl HostFunctionKind for WithoutEnv {}
/// Represents a function that can be converted to a `vm::Func`
/// (function pointer) that can be called within WebAssembly.
pub trait HostFunction<Args, Rets, Kind, T>
where
Args: WasmTypeList,
Rets: WasmTypeList,
Kind: HostFunctionKind,
T: Sized,
Self: Sized,
{
/// Convert to function pointer.
fn to_raw(self) -> *const FunctionBody;
}
#[repr(transparent)]
pub struct FunctionBody(*mut u8);
/// Represents a function that can be used by WebAssembly.
#[derive(Clone, Debug, Hash, PartialEq, Eq)]
pub struct Func<Args = (), Rets = ()> {
address: *const FunctionBody,
_phantom: PhantomData<(Args, Rets)>,
}
unsafe impl<Args, Rets> Send for Func<Args, Rets> {}
impl<Args, Rets> Func<Args, Rets>
where
Args: WasmTypeList,
Rets: WasmTypeList,
{
/// Creates a new `Func`.
pub fn new<F, T, E>(func: F) -> Self
where
F: HostFunction<Args, Rets, T, E>,
T: HostFunctionKind,
E: Sized,
{
Self {
address: func.to_raw(),
_phantom: PhantomData,
}
}
/// Get the type of the Func
pub fn ty(&self) -> FunctionType {
FunctionType::new(Args::wasm_types(), Rets::wasm_types())
}
/// Get the address of the Func
pub fn address(&self) -> *const FunctionBody {
self.address
}
}
macro_rules! impl_traits {
( [$repr:ident] $struct_name:ident, $( $x:ident ),* ) => {
/// Struct for typed funcs.
#[repr($repr)]
pub struct $struct_name< $( $x ),* > ( $( <$x as WasmExternType>::Native ),* )
where
$( $x: WasmExternType ),*;
#[allow(unused_parens, dead_code)]
impl< $( $x ),* > WasmTypeList for ( $( $x ),* )
where
$( $x: WasmExternType ),*
{
type CStruct = $struct_name<$( $x ),*>;
type Array = [i128; count_idents!( $( $x ),* )];
fn from_array(array: Self::Array) -> Self {
#[allow(non_snake_case)]
let [ $( $x ),* ] = array;
( $( WasmExternType::from_native(NativeWasmType::from_binary($x)) ),* )
}
fn into_array(self) -> Self::Array {
#[allow(non_snake_case)]
let ( $( $x ),* ) = self;
[ $( WasmExternType::to_native($x).to_binary() ),* ]
}
fn empty_array() -> Self::Array {
[0; count_idents!( $( $x ),* )]
}
fn from_c_struct(c_struct: Self::CStruct) -> Self {
#[allow(non_snake_case)]
let $struct_name ( $( $x ),* ) = c_struct;
( $( WasmExternType::from_native($x) ),* )
}
#[allow(unused_parens, non_snake_case)]
fn into_c_struct(self) -> Self::CStruct {
let ( $( $x ),* ) = self;
$struct_name ( $( WasmExternType::to_native($x) ),* )
}
fn wasm_types() -> &'static [Type] {
&[$( $x::Native::WASM_TYPE ),*]
}
}
#[allow(unused_parens)]
impl< $( $x, )* Rets, Trap, FN > HostFunction<( $( $x ),* ), Rets, WithoutEnv, ()> for FN
where
$( $x: WasmExternType, )*
Rets: WasmTypeList,
Trap: TrapEarly<Rets>,
FN: Fn($( $x , )*) -> Trap + 'static + Send,
{
#[allow(non_snake_case)]
fn to_raw(self) -> *const FunctionBody {
extern fn wrap<$( $x, )* Rets, Trap, FN>( _: usize, $($x: $x::Native, )* ) -> Rets::CStruct
where
Rets: WasmTypeList,
Trap: TrapEarly<Rets>,
$( $x: WasmExternType, )*
FN: Fn( $( $x ),* ) -> Trap + 'static
{
let f: &FN = unsafe { &*(&() as *const () as *const FN) };
let result = panic::catch_unwind(AssertUnwindSafe(|| {
f( $( WasmExternType::from_native($x) ),* ).report()
}));
match result {
Ok(Ok(result)) => return result.into_c_struct(),
Ok(Err(trap)) => unsafe { raise_user_trap(Box::new(trap)) },
Err(panic) => unsafe { resume_panic(panic) },
}
}
wrap::<$( $x, )* Rets, Trap, Self> as *const FunctionBody
}
}
#[allow(unused_parens)]
impl< $( $x, )* Rets, Trap, T, FN > HostFunction<( $( $x ),* ), Rets, WithEnv, T> for FN
where
$( $x: WasmExternType, )*
Rets: WasmTypeList,
Trap: TrapEarly<Rets>,
T: Sized,
FN: Fn(&mut T, $( $x , )*) -> Trap + 'static + Send
{
#[allow(non_snake_case)]
fn to_raw(self) -> *const FunctionBody {
extern fn wrap<$( $x, )* Rets, Trap, T, FN>( ctx: &mut T, $($x: $x::Native, )* ) -> Rets::CStruct
where
Rets: WasmTypeList,
Trap: TrapEarly<Rets>,
$( $x: WasmExternType, )*
T: Sized,
FN: Fn(&mut T, $( $x ),* ) -> Trap + 'static
{
let f: &FN = unsafe { &*(&() as *const () as *const FN) };
let result = panic::catch_unwind(AssertUnwindSafe(|| {
f(ctx, $( WasmExternType::from_native($x) ),* ).report()
}));
match result {
Ok(Ok(result)) => return result.into_c_struct(),
Ok(Err(trap)) => unsafe { raise_user_trap(Box::new(trap)) },
Err(panic) => unsafe { resume_panic(panic) },
}
}
wrap::<$( $x, )* Rets, Trap, T, Self> as *const FunctionBody
}
}
};
}
macro_rules! count_idents {
( $($idents:ident),* ) => {{
#[allow(dead_code, non_camel_case_types)]
enum Idents { $($idents,)* __CountIdentsLast }
const COUNT: usize = Idents::__CountIdentsLast as usize;
COUNT
}};
}
impl_traits!([C] S0,);
//impl_traits!([transparent] S1, A1);
impl_traits!([C] S2, A1, A2);
impl_traits!([C] S3, A1, A2, A3);
impl_traits!([C] S4, A1, A2, A3, A4);
impl_traits!([C] S5, A1, A2, A3, A4, A5);
impl_traits!([C] S6, A1, A2, A3, A4, A5, A6);
impl_traits!([C] S7, A1, A2, A3, A4, A5, A6, A7);
impl_traits!([C] S8, A1, A2, A3, A4, A5, A6, A7, A8);
impl_traits!([C] S9, A1, A2, A3, A4, A5, A6, A7, A8, A9);
impl_traits!([C] S10, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10);
impl_traits!([C] S11, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11);
impl_traits!([C] S12, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12);
impl_traits!([C] S13, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13);
impl_traits!([C] S14, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14);
impl_traits!([C] S15, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15);
impl_traits!([C] S16, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16);
impl_traits!([C] S17, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17);
impl_traits!([C] S18, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18);
impl_traits!([C] S19, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19);
impl_traits!([C] S20, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20);
impl_traits!([C] S21, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21);
impl_traits!([C] S22, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, A22);
impl_traits!([C] S23, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, A22, A23);
impl_traits!([C] S24, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, A22, A23, A24);
impl_traits!([C] S25, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, A22, A23, A24, A25);
impl_traits!([C] S26, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, A22, A23, A24, A25, A26);
#[cfg(test)]
mod test_wasm_type_list {
use super::*;
use crate::types::Type;
// WasmTypeList
#[test]
fn test_simple_values() {
// Simple values
assert_eq!(<i32>::wasm_types(), [Type::I32]);
assert_eq!(<i64>::wasm_types(), [Type::I64]);
assert_eq!(<f32>::wasm_types(), [Type::F32]);
assert_eq!(<f64>::wasm_types(), [Type::F64]);
// Multi values
assert_eq!(<(i32, i32)>::wasm_types(), [Type::I32, Type::I32]);
assert_eq!(<(i64, i64)>::wasm_types(), [Type::I64, Type::I64]);
assert_eq!(<(f32, f32)>::wasm_types(), [Type::F32, Type::F32]);
assert_eq!(<(f64, f64)>::wasm_types(), [Type::F64, Type::F64]);
// Mixed values
// assert_eq!(<(i32, i64, f32, f64)>::wasm_types(), [Type::I32, Type::I64, Type::F32, Type::F64]);
}
#[test]
fn test_empty_array() {
assert_eq!(<()>::empty_array().len(), 0);
assert_eq!(<i32>::empty_array().len(), 1);
assert_eq!(<(i32, i64)>::empty_array().len(), 2);
}
// #[test]
// fn test_from_array() {
// assert_eq!(<()>::from_array([]), ());
// assert_eq!(<(i32)>::from_array([1]), (1));
// assert_eq!(<(i32, i32)>::from_array([1, 1]), (1, 1));
// // This doesn't work
// // assert_eq!(<(i32, i64, f32, f64)>::from_array([1, 2, (3.1f32).to_bits().into(), (4.2f64).to_bits().into()]), (1, 2, 3.1f32, 4.2f64));
// }
// #[test]
// fn test_into_array() {
// assert_eq!(().into_array(), []);
// assert_eq!((1).into_array(), [1]);
// assert_eq!((1, 2).into_array(), [1, 2]);
// assert_eq!((1, 2, 3).into_array(), [1, 2, 3]);
// // This doesn't work
// // assert_eq!(<(i32, i64, f32, f64)>::from_array([1, 2, (3.1f32).to_bits().into(), (4.2f64).to_bits().into()]), (1, 2, 3.1f32, 4.2f64));
// }
#[test]
fn test_into_c_struct() {
// assert_eq!(<()>::into_c_struct(), &[]);
}
}
#[allow(non_snake_case)]
#[cfg(test)]
mod test_func {
use super::*;
use crate::types::Type;
use std::ptr;
// WasmTypeList
fn func() {}
fn func__i32() -> i32 {
0
}
fn func_i32(_a: i32) {}
fn func_i32__i32(a: i32) -> i32 {
a * 2
}
fn func_i32_i32__i32(a: i32, b: i32) -> i32 {
a + b
}
fn func_i32_i32__i32_i32(a: i32, b: i32) -> (i32, i32) {
(a, b)
}
fn func_f32_i32__i32_f32(a: f32, b: i32) -> (i32, f32) {
(b, a)
}
#[test]
fn test_function_types() {
assert_eq!(Func::new(func).ty(), FunctionType::new(vec![], vec![]));
assert_eq!(
Func::new(func__i32).ty(),
FunctionType::new(vec![], vec![Type::I32])
);
assert_eq!(
Func::new(func_i32).ty(),
FunctionType::new(vec![Type::I32], vec![])
);
assert_eq!(
Func::new(func_i32__i32).ty(),
FunctionType::new(vec![Type::I32], vec![Type::I32])
);
assert_eq!(
Func::new(func_i32_i32__i32).ty(),
FunctionType::new(vec![Type::I32, Type::I32], vec![Type::I32])
);
assert_eq!(
Func::new(func_i32_i32__i32_i32).ty(),
FunctionType::new(vec![Type::I32, Type::I32], vec![Type::I32, Type::I32])
);
assert_eq!(
Func::new(func_f32_i32__i32_f32).ty(),
FunctionType::new(vec![Type::F32, Type::I32], vec![Type::I32, Type::F32])
);
}
#[test]
fn test_function_pointer() {
let f = Func::new(func_i32__i32);
let function = unsafe {
std::mem::transmute::<*const FunctionBody, fn(usize, i32) -> i32>(f.address)
};
assert_eq!(function(0, 3), 6);
}
#[test]
fn test_function_call() {
let f = Func::new(func_i32__i32);
let x = |args: <(i32, i32) as WasmTypeList>::Array,
rets: &mut <(i32, i32) as WasmTypeList>::Array| {
let result = func_i32_i32__i32_i32(args[0] as _, args[1] as _);
rets[0] = result.0 as _;
rets[1] = result.1 as _;
};
let mut rets = <(i64, i64)>::empty_array();
x([20, 10], &mut rets);
// panic!("Rets: {:?}",rets);
let mut rets = <(i64)>::empty_array();
// let result = f.call([1], &mut rets);
// assert_eq!(result.is_err(), true);
}
}
}