Files
wasmer/lib/api/src/sys/externals/memory.rs

314 lines
10 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use crate::sys::exports::{ExportError, Exportable};
use crate::sys::externals::Extern;
use crate::sys::store::{AsStoreMut, AsStoreRef};
use crate::sys::MemoryType;
use crate::MemoryAccessError;
use std::convert::TryInto;
use std::marker::PhantomData;
use std::mem;
use std::mem::MaybeUninit;
use std::slice;
#[cfg(feature = "tracing")]
use tracing::warn;
use wasmer_types::Pages;
use wasmer_vm::{InternalStoreHandle, LinearMemory, MemoryError, StoreHandle, VMExtern, VMMemory};
use super::MemoryView;
/// A WebAssembly `memory` instance.
///
/// A memory instance is the runtime representation of a linear memory.
/// It consists of a vector of bytes and an optional maximum size.
///
/// The length of the vector always is a multiple of the WebAssembly
/// page size, which is defined to be the constant 65536 abbreviated 64Ki.
/// Like in a memory type, the maximum size in a memory instance is
/// given in units of this page size.
///
/// A memory created by the host or in WebAssembly code will be accessible and
/// mutable from both host and WebAssembly.
///
/// Spec: <https://webassembly.github.io/spec/core/exec/runtime.html#memory-instances>
#[derive(Debug, Clone)]
pub struct Memory {
pub(crate) handle: StoreHandle<VMMemory>,
}
impl Memory {
#[cfg(feature = "compiler")]
/// Creates a new host `Memory` from the provided [`MemoryType`].
///
/// This function will construct the `Memory` using the store
/// [`BaseTunables`][crate::sys::BaseTunables].
///
/// # Example
///
/// ```
/// # use wasmer::{Memory, MemoryType, Pages, Store, Type, Value};
/// # let mut store = Store::default();
/// #
/// let m = Memory::new(&mut store, MemoryType::new(1, None, false)).unwrap();
/// ```
pub fn new(store: &mut impl AsStoreMut, ty: MemoryType) -> Result<Self, MemoryError> {
let mut store = store.as_store_mut();
let tunables = store.tunables();
let style = tunables.memory_style(&ty);
let memory = tunables.create_host_memory(&ty, &style)?;
Ok(Self {
handle: StoreHandle::new(store.objects_mut(), memory),
})
}
/// Create a memory object from an existing memory and attaches it to the store
pub fn new_from_existing(new_store: &mut impl AsStoreMut, memory: VMMemory) -> Self {
let handle = StoreHandle::new(new_store.objects_mut(), memory);
Self::from_vm_extern(new_store, handle.internal_handle())
}
/// Returns the [`MemoryType`] of the `Memory`.
///
/// # Example
///
/// ```
/// # use wasmer::{Memory, MemoryType, Pages, Store, Type, Value};
/// # let mut store = Store::default();
/// #
/// let mt = MemoryType::new(1, None, false);
/// let m = Memory::new(&mut store, mt).unwrap();
///
/// assert_eq!(m.ty(&mut store), mt);
/// ```
pub fn ty(&self, store: &impl AsStoreRef) -> MemoryType {
self.handle.get(store.as_store_ref().objects()).ty()
}
/// Creates a view into the memory that then allows for
/// read and write
pub fn view<'a>(&'a self, store: &impl AsStoreRef) -> MemoryView<'a> {
MemoryView::new(self, store)
}
/// Grow memory by the specified amount of WebAssembly [`Pages`] and return
/// the previous memory size.
///
/// # Example
///
/// ```
/// # use wasmer::{Memory, MemoryType, Pages, Store, Type, Value, WASM_MAX_PAGES};
/// # let mut store = Store::default();
/// #
/// let m = Memory::new(&mut store, MemoryType::new(1, Some(3), false)).unwrap();
/// let p = m.grow(&mut store, 2).unwrap();
///
/// assert_eq!(p, Pages(1));
/// assert_eq!(m.view(&mut store).size(), Pages(3));
/// ```
///
/// # Errors
///
/// Returns an error if memory can't be grown by the specified amount
/// of pages.
///
/// ```should_panic
/// # use wasmer::{Memory, MemoryType, Pages, Store, Type, Value, WASM_MAX_PAGES};
/// # use wasmer::FunctionEnv;
/// # let mut store = Store::default();
/// # let env = FunctionEnv::new(&mut store, ());
/// #
/// let m = Memory::new(&mut store, MemoryType::new(1, Some(1), false)).unwrap();
///
/// // This results in an error: `MemoryError::CouldNotGrow`.
/// let s = m.grow(&mut store, 1).unwrap();
/// ```
pub fn grow<IntoPages>(
&self,
store: &mut impl AsStoreMut,
delta: IntoPages,
) -> Result<Pages, MemoryError>
where
IntoPages: Into<Pages>,
{
self.handle.get_mut(store.objects_mut()).grow(delta.into())
}
pub(crate) fn from_vm_extern(
store: &impl AsStoreRef,
internal: InternalStoreHandle<VMMemory>,
) -> Self {
Self {
handle: unsafe {
StoreHandle::from_internal(store.as_store_ref().objects().id(), internal)
},
}
}
/// Checks whether this `Memory` can be used with the given context.
pub fn is_from_store(&self, store: &impl AsStoreRef) -> bool {
self.handle.store_id() == store.as_store_ref().objects().id()
}
/// Attempts to clone this memory (if its clonable)
pub fn try_clone(&self, store: &impl AsStoreRef) -> Option<VMMemory> {
let mem = self.handle.get(store.as_store_ref().objects());
mem.try_clone().map(|mem| mem.into())
}
pub(crate) fn to_vm_extern(&self) -> VMExtern {
VMExtern::Memory(self.handle.internal_handle())
}
}
impl std::cmp::PartialEq for Memory {
fn eq(&self, other: &Self) -> bool {
self.handle == other.handle
}
}
impl std::cmp::Eq for Memory {}
impl<'a> Exportable<'a> for Memory {
fn get_self_from_extern(_extern: &'a Extern) -> Result<&'a Self, ExportError> {
match _extern {
Extern::Memory(memory) => Ok(memory),
_ => Err(ExportError::IncompatibleType),
}
}
}
/// Underlying buffer for a memory.
#[derive(Debug, Copy, Clone)]
pub(crate) struct MemoryBuffer<'a> {
pub(crate) base: *mut u8,
pub(crate) len: usize,
pub(crate) marker: PhantomData<&'a MemoryView<'a>>,
}
impl<'a> MemoryBuffer<'a> {
pub(crate) fn read(&self, offset: u64, buf: &mut [u8]) -> Result<(), MemoryAccessError> {
let end = offset
.checked_add(buf.len() as u64)
.ok_or(MemoryAccessError::Overflow)?;
if end > self.len.try_into().unwrap() {
#[cfg(feature = "tracing")]
warn!(
"attempted to read ({} bytes) beyond the bounds of the memory view ({} > {})",
buf.len(),
end,
self.len
);
return Err(MemoryAccessError::HeapOutOfBounds);
}
unsafe {
volatile_memcpy_read(self.base.add(offset as usize), buf.as_mut_ptr(), buf.len());
}
Ok(())
}
pub(crate) fn read_uninit<'b>(
&self,
offset: u64,
buf: &'b mut [MaybeUninit<u8>],
) -> Result<&'b mut [u8], MemoryAccessError> {
let end = offset
.checked_add(buf.len() as u64)
.ok_or(MemoryAccessError::Overflow)?;
if end > self.len.try_into().unwrap() {
#[cfg(feature = "tracing")]
warn!(
"attempted to read ({} bytes) beyond the bounds of the memory view ({} > {})",
buf.len(),
end,
self.len
);
return Err(MemoryAccessError::HeapOutOfBounds);
}
let buf_ptr = buf.as_mut_ptr() as *mut u8;
unsafe {
volatile_memcpy_read(self.base.add(offset as usize), buf_ptr, buf.len());
}
Ok(unsafe { slice::from_raw_parts_mut(buf_ptr, buf.len()) })
}
pub(crate) fn write(&self, offset: u64, data: &[u8]) -> Result<(), MemoryAccessError> {
let end = offset
.checked_add(data.len() as u64)
.ok_or(MemoryAccessError::Overflow)?;
if end > self.len.try_into().unwrap() {
#[cfg(feature = "tracing")]
warn!(
"attempted to write ({} bytes) beyond the bounds of the memory view ({} > {})",
data.len(),
end,
self.len
);
return Err(MemoryAccessError::HeapOutOfBounds);
}
unsafe {
volatile_memcpy_write(data.as_ptr(), self.base.add(offset as usize), data.len());
}
Ok(())
}
}
// We can't use a normal memcpy here because it has undefined behavior if the
// memory is being concurrently modified. So we need to write our own memcpy
// implementation which uses volatile operations.
//
// The implementation of these functions can optimize very well when inlined
// with a fixed length: they should compile down to a single load/store
// instruction for small (8/16/32/64-bit) copies.
#[inline]
unsafe fn volatile_memcpy_read(mut src: *const u8, mut dst: *mut u8, mut len: usize) {
#[inline]
unsafe fn copy_one<T>(src: &mut *const u8, dst: &mut *mut u8, len: &mut usize) {
#[repr(packed)]
struct Unaligned<T>(T);
let val = (*src as *const Unaligned<T>).read_volatile();
(*dst as *mut Unaligned<T>).write(val);
*src = src.add(mem::size_of::<T>());
*dst = dst.add(mem::size_of::<T>());
*len -= mem::size_of::<T>();
}
while len >= 8 {
copy_one::<u64>(&mut src, &mut dst, &mut len);
}
if len >= 4 {
copy_one::<u32>(&mut src, &mut dst, &mut len);
}
if len >= 2 {
copy_one::<u16>(&mut src, &mut dst, &mut len);
}
if len >= 1 {
copy_one::<u8>(&mut src, &mut dst, &mut len);
}
}
#[inline]
unsafe fn volatile_memcpy_write(mut src: *const u8, mut dst: *mut u8, mut len: usize) {
#[inline]
unsafe fn copy_one<T>(src: &mut *const u8, dst: &mut *mut u8, len: &mut usize) {
#[repr(packed)]
struct Unaligned<T>(T);
let val = (*src as *const Unaligned<T>).read();
(*dst as *mut Unaligned<T>).write_volatile(val);
*src = src.add(mem::size_of::<T>());
*dst = dst.add(mem::size_of::<T>());
*len -= mem::size_of::<T>();
}
while len >= 8 {
copy_one::<u64>(&mut src, &mut dst, &mut len);
}
if len >= 4 {
copy_one::<u32>(&mut src, &mut dst, &mut len);
}
if len >= 2 {
copy_one::<u16>(&mut src, &mut dst, &mut len);
}
if len >= 1 {
copy_one::<u8>(&mut src, &mut dst, &mut len);
}
}