Files
wasmer/lib/cli/src/commands/create_exe.rs
2022-12-02 14:51:22 +01:00

1724 lines
61 KiB
Rust

//! Create a standalone native executable for a given Wasm file.
use super::ObjectFormat;
use crate::store::CompilerOptions;
use anyhow::{Context, Result};
use clap::Parser;
use std::env;
use std::fmt::Write as _;
use std::fs;
use std::fs::File;
use std::io::prelude::*;
use std::io::BufWriter;
use std::path::{Path, PathBuf};
use std::process::Command;
use wasmer::*;
use wasmer_object::{emit_serialized, get_object_for_target};
#[cfg(feature = "webc_runner")]
use webc::{ParseOptions, WebCMmap};
/// The `prefixer` returns the a String to prefix each of the
/// functions in the static object generated by the
/// so we can assure no collisions.
#[cfg(feature = "static-artifact-create")]
pub type PrefixerFn = Box<dyn Fn(&[u8]) -> String + Send>;
const WASMER_MAIN_C_SOURCE: &str = include_str!("wasmer_create_exe_main.c");
#[cfg(feature = "static-artifact-create")]
const WASMER_STATIC_MAIN_C_SOURCE: &str = include_str!("wasmer_static_create_exe_main.c");
#[derive(Debug, Clone)]
pub(crate) struct CrossCompile {
/// Cross-compilation library path.
pub(crate) library_path: Option<PathBuf>,
/// Cross-compilation tarball library path.
pub(crate) tarball: Option<PathBuf>,
/// Specify `zig` binary path
pub(crate) zig_binary_path: Option<PathBuf>,
}
#[derive(Debug)]
pub(crate) struct CrossCompileSetup {
pub(crate) target: Triple,
pub(crate) zig_binary_path: PathBuf,
pub(crate) library: PathBuf,
}
#[derive(Debug, Parser)]
/// The options for the `wasmer create-exe` subcommand
pub struct CreateExe {
/// Input file
#[clap(name = "FILE", parse(from_os_str))]
path: PathBuf,
/// Output file
#[clap(name = "OUTPUT PATH", short = 'o', parse(from_os_str))]
output: PathBuf,
/// Compilation Target triple
///
/// Accepted target triple values must follow the
/// ['target_lexicon'](https://crates.io/crates/target-lexicon) crate format.
///
/// The recommended targets we try to support are:
///
/// - "x86_64-linux-gnu"
/// - "aarch64-linux-gnu"
/// - "x86_64-apple-darwin"
/// - "arm64-apple-darwin"
#[clap(long = "target")]
target_triple: Option<Triple>,
// Cross-compile with `zig`
/// Cross-compilation library path.
#[clap(long = "library-path")]
library_path: Option<PathBuf>,
/// Cross-compilation tarball library path.
#[clap(long = "tarball")]
tarball: Option<PathBuf>,
/// Specify `zig` binary path
#[clap(long = "zig-binary-path")]
zig_binary_path: Option<PathBuf>,
/// When compiling .webc files in separate steps
/// (create-obj, then create-exe on the resulting dir)
/// the create-exe step needs the path to the .webc file again
#[clap(long = "webc-volume-path")]
webc_volume_path: Option<PathBuf>,
/// Object format options
///
/// This flag accepts two options: `symbols` or `serialized`.
/// - (default) `symbols` creates an
/// executable where all functions and metadata of the module are regular object symbols
/// - `serialized` creates an executable where the module is zero-copy serialized as raw data
#[clap(name = "OBJECT_FORMAT", long = "object-format", verbatim_doc_comment)]
object_format: Option<ObjectFormat>,
/// Header file for object input
///
/// If given, the input `PATH` is assumed to be an object created with `wasmer create-obj` and
/// this is its accompanying header file.
#[clap(name = "HEADER", long = "header", verbatim_doc_comment)]
header: Option<PathBuf>,
#[clap(short = 'm')]
cpu_features: Vec<CpuFeature>,
/// Additional libraries to link against.
/// This is useful for fixing linker errors that may occur on some systems.
#[clap(short = 'l')]
libraries: Vec<String>,
#[clap(flatten)]
compiler: CompilerOptions,
}
impl CreateExe {
/// Runs logic for the `compile` subcommand
pub fn execute(&self) -> Result<()> {
/* Making library_path, tarball zig_binary_path flags require that target_triple flag
* is set cannot be encoded with structopt, so we have to perform cli flag validation
* manually here */
let cross_compile: Option<CrossCompile> = if self.target_triple.is_none()
&& (self.library_path.is_some()
|| self.tarball.is_some()
|| self.zig_binary_path.is_some())
{
return Err(anyhow!(
"To cross-compile an executable, you must specify a target triple with --target"
));
} else if self.target_triple.is_some() {
Some(CrossCompile {
library_path: self.library_path.clone(),
zig_binary_path: self.zig_binary_path.clone(),
tarball: self.tarball.clone(),
})
} else {
None
};
let target = self
.target_triple
.as_ref()
.map(|target_triple| {
let mut features = self
.cpu_features
.clone()
.into_iter()
.fold(CpuFeature::set(), |a, b| a | b);
// Cranelift requires SSE2, so we have this "hack" for now to facilitate
// usage
if target_triple.architecture == Architecture::X86_64 {
features |= CpuFeature::SSE2;
}
Target::new(target_triple.clone(), features)
})
.unwrap_or_default();
let starting_cd = env::current_dir()?;
let wasm_module_path = starting_cd.join(&self.path);
let output_path = starting_cd.join(&self.output);
let object_format = self.object_format.unwrap_or(ObjectFormat::Symbols);
let cross_compilation = Self::get_cross_compile_setup(
cross_compile,
self.target_triple.clone(),
object_format,
&starting_cd,
)?;
#[cfg(feature = "webc_runner")]
{
let working_dir = tempdir::TempDir::new("testpirita")?;
let working_dir = working_dir.path().to_path_buf();
if let Ok(pirita) = WebCMmap::parse(wasm_module_path.clone(), &ParseOptions::default())
{
return self.create_exe_pirita(
&pirita,
target,
cross_compilation,
&working_dir,
output_path,
object_format,
);
}
}
let (store, compiler_type) = self.compiler.get_store_for_target(target.clone())?;
// Object is likely a file created from create-obj
#[cfg(feature = "webc_runner")]
if self.path.is_dir() {
let pirita_volume_path = self.webc_volume_path.clone()
.ok_or_else(|| anyhow::anyhow!("If compiling using a directory (created by create-obj), you need to also specify the webc path again using --webc-volume-path because the volumes.o is not part of the directory"))?;
let file = WebCMmap::parse(pirita_volume_path.clone(), &ParseOptions::default())
.map_err(|e| {
anyhow::anyhow!(
"could not parse {} as webc: {e}",
pirita_volume_path.display()
)
})?;
let volume_bytes = file.get_volumes_as_fileblock();
return self.link_exe_from_dir(
volume_bytes.as_slice(),
&store,
&target,
cross_compilation,
&self.path,
output_path,
object_format,
);
}
println!("Compiler: {}", compiler_type.to_string());
println!("Target: {}", target.triple());
println!("Format: {:?}", object_format);
#[cfg(not(windows))]
let wasm_object_path = PathBuf::from("wasm.o");
#[cfg(windows)]
let wasm_object_path = PathBuf::from("wasm.obj");
if let Some(header_path) = self.header.as_ref() {
/* In this case, since a header file is given, the input file is expected to be an
* object created with `create-obj` subcommand */
let header_path = starting_cd.join(&header_path);
std::fs::copy(&header_path, Path::new("static_defs.h"))
.context("Could not access given header file")?;
if let Some(setup) = cross_compilation.as_ref() {
self.compile_zig(
output_path,
&[wasm_module_path],
&[std::path::Path::new("static_defs.h").into()],
setup,
&[],
None,
None,
)?;
} else {
self.link(
output_path,
wasm_module_path,
std::path::Path::new("static_defs.h").into(),
&[],
None,
None,
)?;
}
} else {
match object_format {
ObjectFormat::Serialized => {
let module = Module::from_file(&store, &wasm_module_path)
.context("failed to compile Wasm")?;
let bytes = module.serialize()?;
let mut obj = get_object_for_target(target.triple())?;
emit_serialized(&mut obj, &bytes, target.triple(), "WASMER_MODULE")?;
let mut writer = BufWriter::new(File::create(&wasm_object_path)?);
obj.write_stream(&mut writer)
.map_err(|err| anyhow::anyhow!(err.to_string()))?;
writer.flush()?;
drop(writer);
let cli_given_triple = self.target_triple.clone();
self.compile_c(wasm_object_path, cli_given_triple, output_path)?;
}
#[cfg(not(feature = "static-artifact-create"))]
ObjectFormat::Symbols => {
return Err(anyhow!("This version of wasmer-cli hasn't been compiled with static artifact support. You need to enable the `static-artifact-create` feature during compilation."));
}
#[cfg(feature = "static-artifact-create")]
ObjectFormat::Symbols => {
let engine = store.engine();
let engine_inner = engine.inner();
let compiler = engine_inner.compiler()?;
let features = engine_inner.features();
let tunables = store.tunables();
let data: Vec<u8> = fs::read(wasm_module_path)?;
let prefixer: Option<PrefixerFn> = None;
let (module_info, obj, metadata_length, symbol_registry) =
Artifact::generate_object(
compiler, &data, prefixer, &target, tunables, features,
)?;
let header_file_src = crate::c_gen::staticlib_header::generate_header_file(
&module_info,
&*symbol_registry,
metadata_length,
);
// Write object file with functions
let object_file_path: std::path::PathBuf =
std::path::Path::new("functions.o").into();
let mut writer = BufWriter::new(File::create(&object_file_path)?);
obj.write_stream(&mut writer)
.map_err(|err| anyhow::anyhow!(err.to_string()))?;
writer.flush()?;
// Write down header file that includes pointer arrays and the deserialize function
let mut writer = BufWriter::new(File::create("static_defs.h")?);
writer.write_all(header_file_src.as_bytes())?;
writer.flush()?;
if let Some(setup) = cross_compilation.as_ref() {
self.compile_zig(
output_path,
&[object_file_path],
&[std::path::Path::new("static_defs.h").into()],
setup,
&[],
None,
None,
)?;
} else {
self.link(
output_path,
object_file_path,
std::path::Path::new("static_defs.h").into(),
&[],
None,
None,
)?;
}
}
}
}
if cross_compilation.is_some() {
eprintln!(
"✔ Cross-compiled executable for `{}` target compiled successfully to `{}`.",
target.triple(),
self.output.display(),
);
} else {
eprintln!(
"✔ Native executable compiled successfully to `{}`.",
self.output.display(),
);
}
Ok(())
}
pub(crate) fn get_cross_compile_setup(
cross_compile: Option<CrossCompile>,
target_triple: Option<Triple>,
object_format: ObjectFormat,
starting_cd: &Path,
) -> Result<Option<CrossCompileSetup>, anyhow::Error> {
if let Some(mut cross_subc) = cross_compile.or_else(|| {
if target_triple.is_some() {
Some(CrossCompile {
library_path: None,
tarball: None,
zig_binary_path: None,
})
} else {
None
}
}) {
if let ObjectFormat::Serialized = object_format {
return Err(anyhow!(
"Cross-compilation with serialized object format is not implemented."
));
}
let target = if let Some(target_triple) = target_triple {
target_triple
} else {
return Err(anyhow!(
"To cross-compile an executable, you must specify a target triple with --target"
));
};
if let Some(tarball_path) = cross_subc.tarball.as_mut() {
if tarball_path.is_relative() {
*tarball_path = starting_cd.join(&tarball_path);
if !tarball_path.exists() {
return Err(anyhow!(
"Tarball path `{}` does not exist.",
tarball_path.display()
));
} else if tarball_path.is_dir() {
return Err(anyhow!(
"Tarball path `{}` is a directory.",
tarball_path.display()
));
}
}
}
let zig_binary_path =
find_zig_binary(cross_subc.zig_binary_path.as_ref().and_then(|p| {
if p.is_absolute() {
p.canonicalize().ok()
} else {
starting_cd.join(p).canonicalize().ok()
}
}))?;
let library = if let Some(v) = cross_subc.library_path.clone() {
v.canonicalize().unwrap_or(v)
} else {
let (filename, tarball_dir) =
if let Some(local_tarball) = cross_subc.tarball.as_ref() {
Self::find_filename(local_tarball, &target)
} else {
// check if the tarball for the target already exists locally
let local_tarball = std::fs::read_dir(get_libwasmer_cache_path()?)?
.filter_map(|e| e.ok())
.filter_map(|e| {
let path = format!("{}", e.path().display());
if path.ends_with(".tar.gz") {
Some(e.path())
} else {
None
}
})
.filter_map(|p| Self::filter_tarballs(&p, &target))
.next();
if let Some(local_tarball) = local_tarball.as_ref() {
Self::find_filename(local_tarball, &target)
} else {
let release = http_fetch::get_latest_release()?;
let tarball = http_fetch::download_release(release, target.clone())?;
Self::find_filename(&tarball, &target)
}
}?;
tarball_dir.join(&filename)
};
let ccs = CrossCompileSetup {
target,
zig_binary_path,
library,
};
Ok(Some(ccs))
} else {
Ok(None)
}
}
fn find_filename(
local_tarball: &Path,
target: &Triple,
) -> Result<(String, PathBuf), anyhow::Error> {
let target_file_path = local_tarball
.parent()
.and_then(|parent| Some(parent.join(local_tarball.file_stem()?)))
.unwrap_or_else(|| local_tarball.to_path_buf());
let target_file_path = target_file_path
.parent()
.and_then(|parent| Some(parent.join(target_file_path.file_stem()?)))
.unwrap_or_else(|| target_file_path.clone());
std::fs::create_dir_all(&target_file_path)
.map_err(|e| anyhow::anyhow!("{e}"))
.context(anyhow::anyhow!("{}", target_file_path.display()))?;
let files = untar(local_tarball.to_path_buf(), target_file_path.clone())?;
let tarball_dir = target_file_path.canonicalize().unwrap_or(target_file_path);
let file = files
.iter()
.find(|f| f.ends_with("libwasmer.a")).cloned()
.ok_or_else(|| {
anyhow!("Could not find libwasmer.a for {} target in the provided tarball path (files = {files:#?})", target)
})?;
Ok((file, tarball_dir))
}
fn filter_tarballs(p: &Path, target: &Triple) -> Option<PathBuf> {
if let Architecture::Aarch64(_) = target.architecture {
if !p.file_name()?.to_str()?.contains("aarch64") {
return None;
}
}
if let Architecture::X86_64 = target.architecture {
if !p.file_name()?.to_str()?.contains("x86_64") {
return None;
}
}
if let OperatingSystem::Windows = target.operating_system {
if !p.file_name()?.to_str()?.contains("windows") {
return None;
}
}
if let OperatingSystem::Darwin = target.operating_system {
if !(p.file_name()?.to_str()?.contains("apple")
|| p.file_name()?.to_str()?.contains("darwin"))
{
return None;
}
}
if let OperatingSystem::Linux = target.operating_system {
if !p.file_name()?.to_str()?.contains("linux") {
return None;
}
}
Some(p.to_path_buf())
}
fn compile_c(
&self,
wasm_object_path: PathBuf,
target_triple: Option<wasmer::Triple>,
output_path: PathBuf,
) -> anyhow::Result<()> {
let tempdir = tempdir::TempDir::new("compile-c")?;
let tempdir_path = tempdir.path();
// write C src to disk
let c_src_path = tempdir_path.join("wasmer_main.c");
#[cfg(not(windows))]
let c_src_obj = tempdir_path.join("wasmer_main.o");
#[cfg(windows)]
let c_src_obj = tempdir_path.join("wasmer_main.obj");
std::fs::write(
&c_src_path,
WASMER_MAIN_C_SOURCE
.replace("// WASI_DEFINES", "#define WASI")
.as_bytes(),
)?;
run_c_compile(&c_src_path, &c_src_obj, target_triple.clone())
.context("Failed to compile C source code")?;
LinkCode {
object_paths: vec![c_src_obj, wasm_object_path],
output_path,
additional_libraries: self.libraries.clone(),
target: target_triple,
..Default::default()
}
.run()
.context("Failed to link objects together")?;
Ok(())
}
#[allow(clippy::too_many_arguments)]
fn compile_zig(
&self,
output_path: PathBuf,
object_paths: &[PathBuf],
header_code_paths: &[PathBuf],
setup: &CrossCompileSetup,
pirita_atoms: &[String],
pirita_main_atom: Option<&str>,
pirita_volume_path: Option<PathBuf>,
) -> anyhow::Result<()> {
let tempdir = tempdir::TempDir::new("wasmer-static-compile-zig")?;
let tempdir_path = tempdir.path();
let c_src_path = tempdir_path.join("wasmer_main.c");
let CrossCompileSetup {
ref target,
ref zig_binary_path,
ref library,
} = setup;
let mut libwasmer_path = library.to_path_buf();
println!("Library Path: {}", libwasmer_path.display());
/* Cross compilation is only possible with zig */
println!("Using zig binary: {}", zig_binary_path.display());
let zig_triple = triple_to_zig_triple(target);
println!("Using zig target triple: {}", &zig_triple);
let lib_filename = libwasmer_path
.file_name()
.unwrap()
.to_str()
.unwrap()
.to_string();
libwasmer_path.pop();
if let Some(entrypoint) = pirita_main_atom.as_ref() {
let c_code = Self::generate_pirita_wasmer_main_c_static(pirita_atoms, entrypoint);
std::fs::write(&c_src_path, c_code)?;
} else {
std::fs::write(&c_src_path, WASMER_STATIC_MAIN_C_SOURCE)?;
}
let mut header_code_paths = header_code_paths.to_vec();
for h in header_code_paths.iter_mut() {
if !h.is_dir() {
h.pop();
}
if h.display().to_string().is_empty() {
*h = std::env::current_dir()?;
}
}
/* Compile main function */
let compilation = {
let mut include_dir = libwasmer_path.clone();
include_dir.pop();
include_dir.push("include");
let mut cmd = Command::new(zig_binary_path);
cmd.arg("build-exe");
cmd.arg("-target");
cmd.arg(&zig_triple);
cmd.arg(&format!("-I{}/", include_dir.display()));
for h in header_code_paths {
cmd.arg(&format!("-I{}/", h.display()));
}
if zig_triple.contains("windows") {
cmd.arg("-lc++");
} else {
cmd.arg("-lc");
}
cmd.arg("-lunwind");
cmd.arg("-fno-compiler-rt");
cmd.arg(&format!("-femit-bin={}", output_path.display()));
for o in object_paths {
cmd.arg(o);
}
cmd.arg(&c_src_path);
cmd.arg(libwasmer_path.join(&lib_filename));
if zig_triple.contains("windows") {
let mut libwasmer_parent = libwasmer_path.clone();
libwasmer_parent.pop();
let files_winsdk = std::fs::read_dir(libwasmer_parent.join("winsdk"))
.ok()
.map(|res| res.filter_map(|r| Some(r.ok()?.path())).collect::<Vec<_>>())
.unwrap_or_default();
for f in files_winsdk {
cmd.arg(f);
}
}
if let Some(volume_obj) = pirita_volume_path.as_ref() {
cmd.arg(volume_obj.clone());
}
#[cfg(feature = "debug")]
log::debug!("{:?}", cmd);
cmd.output().context("Could not execute `zig`")?
};
if !compilation.status.success() {
return Err(anyhow::anyhow!(String::from_utf8_lossy(
&compilation.stderr
)
.to_string()));
}
Ok(())
}
// Write the volumes.o file
#[cfg(feature = "webc_runner")]
fn write_volume_obj(
volume_bytes: &[u8],
target: &Target,
output_path: &Path,
) -> anyhow::Result<PathBuf> {
#[cfg(not(windows))]
let volume_object_path = output_path.join("volumes.o");
#[cfg(windows)]
let volume_object_path = output_path.join("volumes.obj");
let mut volumes_object = get_object_for_target(target.triple())?;
emit_serialized(
&mut volumes_object,
volume_bytes,
target.triple(),
"VOLUMES",
)?;
let mut writer = BufWriter::new(File::create(&volume_object_path)?);
volumes_object
.write_stream(&mut writer)
.map_err(|err| anyhow::anyhow!(err.to_string()))?;
writer.flush()?;
drop(writer);
Ok(volume_object_path)
}
#[cfg(feature = "webc_runner")]
pub(crate) fn create_objs_pirita(
store: &Store,
file: &WebCMmap,
target: &Target,
output_path: &Path,
object_format: ObjectFormat,
) -> anyhow::Result<()> {
if !output_path.is_dir() {
return Err(anyhow::anyhow!(
"Expected {} to be an output directory, not a file",
output_path.display()
));
}
std::fs::create_dir_all(output_path)?;
std::fs::create_dir_all(output_path.join("atoms"))?;
let atom_to_run = file
.manifest
.entrypoint
.as_ref()
.and_then(|s| file.get_atom_name_for_command("wasi", s).ok());
if let Some(atom_to_run) = atom_to_run.as_ref() {
std::fs::write(output_path.join("entrypoint"), atom_to_run)?;
}
for (atom_name, atom_bytes) in file.get_all_atoms() {
std::fs::create_dir_all(output_path.join("atoms"))?;
#[cfg(not(windows))]
let object_path = output_path.join("atoms").join(&format!("{atom_name}.o"));
#[cfg(windows)]
let object_path = output_path.join("atoms").join(&format!("{atom_name}.obj"));
std::fs::create_dir_all(output_path.join("atoms").join(&atom_name))?;
let header_path = output_path
.join("atoms")
.join(&atom_name)
.join("static_defs.h");
match object_format {
ObjectFormat::Serialized => {
let module = Module::new(&store, &atom_bytes)
.context(format!("Failed to compile atom {atom_name:?} to wasm"))?;
let bytes = module.serialize()?;
let mut obj = get_object_for_target(target.triple())?;
let atom_name_uppercase = atom_name.to_uppercase();
emit_serialized(&mut obj, &bytes, target.triple(), &atom_name_uppercase)?;
let mut writer = BufWriter::new(File::create(&object_path)?);
obj.write_stream(&mut writer)
.map_err(|err| anyhow::anyhow!(err.to_string()))?;
writer.flush()?;
drop(writer);
}
#[cfg(feature = "static-artifact-create")]
ObjectFormat::Symbols => {
let engine = store.engine();
let engine_inner = engine.inner();
let compiler = engine_inner.compiler()?;
let features = engine_inner.features();
let tunables = store.tunables();
let prefixer: Option<PrefixerFn> = None;
let (module_info, obj, metadata_length, symbol_registry) =
Artifact::generate_object(
compiler, atom_bytes, prefixer, target, tunables, features,
)?;
let header_file_src = crate::c_gen::staticlib_header::generate_header_file(
&module_info,
&*symbol_registry,
metadata_length,
);
let mut writer = BufWriter::new(File::create(&object_path)?);
obj.write_stream(&mut writer)
.map_err(|err| anyhow::anyhow!(err.to_string()))?;
writer.flush()?;
let mut writer = BufWriter::new(File::create(&header_path)?);
writer.write_all(header_file_src.as_bytes())?;
writer.flush()?;
}
#[cfg(not(feature = "static-artifact-create"))]
ObjectFormat::Symbols => {
return Err(anyhow!("Objects cannot be compiled in format \"symbols\" without static-artifact-create feature"));
}
}
}
Ok(())
}
#[cfg(feature = "webc_runner")]
#[allow(clippy::too_many_arguments)]
fn link_exe_from_dir(
&self,
volume_bytes: &[u8],
_store: &Store,
target: &Target,
cross_compilation: Option<CrossCompileSetup>,
working_dir: &Path,
output_path: PathBuf,
object_format: ObjectFormat,
) -> anyhow::Result<()> {
let tempdir = tempdir::TempDir::new("link-exe-from-dir")?;
let tempdir_path = tempdir.path();
let entrypoint = std::fs::read_to_string(working_dir.join("entrypoint"))
.map_err(|_| anyhow::anyhow!("file has no entrypoint to run"))?;
if !working_dir.join("atoms").exists() {
return Err(anyhow::anyhow!("file has no atoms to compile"));
}
let mut atom_names = Vec::new();
for obj in std::fs::read_dir(working_dir.join("atoms"))? {
let path = obj?.path();
if !path.is_dir() {
if let Some(s) = path.file_stem() {
atom_names.push(
s.to_str()
.ok_or_else(|| anyhow::anyhow!("wrong atom name"))?
.to_string(),
);
}
}
}
match object_format {
ObjectFormat::Serialized => {
let mut link_objects: Vec<PathBuf> = Vec::new();
let volume_object_path =
Self::write_volume_obj(volume_bytes, target, tempdir_path)?;
#[cfg(not(windows))]
let c_src_obj = working_dir.join("wasmer_main.o");
#[cfg(windows)]
let c_src_obj = working_dir.join("wasmer_main.obj");
for obj in std::fs::read_dir(working_dir.join("atoms"))? {
let path = obj?.path();
if !path.is_dir() {
link_objects.push(path.to_path_buf());
}
}
let c_code = Self::generate_pirita_wasmer_main_c(&atom_names, &entrypoint);
let c_src_path = working_dir.join("wasmer_main.c");
std::fs::write(&c_src_path, c_code.as_bytes())
.context("Failed to open C source code file")?;
// TODO: this branch is never hit because object format serialized +
// cross compilation doesn't work
if let Some(setup) = cross_compilation {
// zig treats .o files the same as .c files
link_objects.push(c_src_path);
self.compile_zig(
output_path,
&link_objects,
&[],
&setup,
&atom_names,
Some(&entrypoint),
Some(volume_object_path),
)?;
} else {
// compile with cc instead of zig
run_c_compile(c_src_path.as_path(), &c_src_obj, self.target_triple.clone())
.context("Failed to compile C source code")?;
link_objects.push(c_src_obj);
link_objects.push(volume_object_path);
LinkCode {
object_paths: link_objects,
output_path,
additional_libraries: self.libraries.clone(),
target: self.target_triple.clone(),
..Default::default()
}
.run()
.context("Failed to link objects together")?;
}
}
ObjectFormat::Symbols => {
let object_file_path = working_dir.join("atoms").join(&format!("{entrypoint}.o"));
let static_defs_file_path = working_dir
.join("atoms")
.join(&entrypoint)
.join("static_defs.h");
let volumes_obj_path = Self::write_volume_obj(volume_bytes, target, tempdir_path)?;
if let Some(setup) = cross_compilation.as_ref() {
self.compile_zig(
output_path,
&[object_file_path],
&[static_defs_file_path],
setup,
&atom_names,
Some(&entrypoint),
Some(volumes_obj_path),
)?;
} else {
self.link(
output_path,
object_file_path,
static_defs_file_path,
&atom_names,
Some(&entrypoint),
Some(volumes_obj_path),
)?;
}
}
}
Ok(())
}
fn normalize_atom_name(s: &str) -> String {
s.chars()
.filter_map(|c| {
if char::is_alphabetic(c) {
Some(c)
} else if c == '-' {
Some('_')
} else {
None
}
})
.collect()
}
fn generate_pirita_wasmer_main_c_static(atom_names: &[String], atom_to_run: &str) -> String {
let mut c_code_to_instantiate = String::new();
let mut deallocate_module = String::new();
let atom_to_run = Self::normalize_atom_name(atom_to_run);
for atom_name in atom_names.iter() {
let atom_name = Self::normalize_atom_name(atom_name);
write!(
c_code_to_instantiate,
"
wasm_module_t *atom_{atom_name} = wasmer_object_module_new(store, \"{atom_name}\");
if (!atom_{atom_name}) {{
fprintf(stderr, \"Failed to create module from atom \\\"{atom_name}\\\"\\n\");
print_wasmer_error();
return -1;
}}
"
)
.unwrap();
write!(deallocate_module, "wasm_module_delete(atom_{atom_name});").unwrap();
}
write!(
c_code_to_instantiate,
"wasm_module_t *module = atom_{atom_to_run};"
)
.unwrap();
WASMER_STATIC_MAIN_C_SOURCE
.replace("#define WASI", "#define WASI\r\n#define WASI_PIRITA")
.replace("// INSTANTIATE_MODULES", &c_code_to_instantiate)
.replace("##atom-name##", &atom_to_run)
.replace("wasm_module_delete(module);", &deallocate_module)
}
#[cfg(feature = "webc_runner")]
fn generate_pirita_wasmer_main_c(atom_names: &[String], atom_to_run: &str) -> String {
let mut c_code_to_add = String::new();
let mut c_code_to_instantiate = String::new();
let mut deallocate_module = String::new();
for atom_name in atom_names.iter() {
let atom_name = Self::normalize_atom_name(atom_name);
let atom_name_uppercase = atom_name.to_uppercase();
c_code_to_add.push_str(&format!(
"
extern size_t {atom_name_uppercase}_LENGTH asm(\"{atom_name_uppercase}_LENGTH\");
extern char {atom_name_uppercase}_DATA asm(\"{atom_name_uppercase}_DATA\");
"
));
c_code_to_instantiate.push_str(&format!("
wasm_byte_vec_t atom_{atom_name}_byte_vec = {{
.size = {atom_name_uppercase}_LENGTH,
.data = &{atom_name_uppercase}_DATA,
}};
wasm_module_t *atom_{atom_name} = wasm_module_deserialize(store, &atom_{atom_name}_byte_vec);
if (!atom_{atom_name}) {{
fprintf(stderr, \"Failed to create module from atom \\\"{atom_name}\\\"\\n\");
print_wasmer_error();
return -1;
}}
"));
deallocate_module.push_str(&format!("wasm_module_delete(atom_{atom_name});"));
}
c_code_to_instantiate.push_str(&format!("wasm_module_t *module = atom_{atom_to_run};"));
WASMER_MAIN_C_SOURCE
.replace("#define WASI", "#define WASI\r\n#define WASI_PIRITA")
.replace("// DECLARE_MODULES", &c_code_to_add)
.replace("// INSTANTIATE_MODULES", &c_code_to_instantiate)
.replace("##atom-name##", atom_to_run)
.replace("wasm_module_delete(module);", &deallocate_module)
}
#[cfg(feature = "webc_runner")]
fn create_exe_pirita(
&self,
file: &WebCMmap,
target: Target,
cross_compilation: Option<CrossCompileSetup>,
working_dir: &Path,
output_path: PathBuf,
object_format: ObjectFormat,
) -> anyhow::Result<()> {
let _ = std::fs::create_dir_all(&working_dir);
let (store, _) = self.compiler.get_store_for_target(target.clone())?;
Self::create_objs_pirita(&store, file, &target, working_dir, object_format)?;
let volumes_obj = file.get_volumes_as_fileblock();
self.link_exe_from_dir(
volumes_obj.as_slice(),
&store,
&target,
cross_compilation,
working_dir,
output_path,
object_format,
)?;
Ok(())
}
#[cfg(feature = "static-artifact-create")]
fn link(
&self,
output_path: PathBuf,
object_path: PathBuf,
mut header_code_path: PathBuf,
pirita_atoms: &[String],
pirita_main_atom: Option<&str>,
pirita_volume_path: Option<PathBuf>,
) -> anyhow::Result<()> {
let tempdir = tempdir::TempDir::new("wasmer-static-compile")?;
let tempdir_path = tempdir.path();
let mut object_paths = vec![object_path, "main_obj.obj".into()];
if let Some(volume_obj) = pirita_volume_path.as_ref() {
object_paths.push(volume_obj.to_path_buf());
}
let linkcode = LinkCode {
object_paths,
output_path,
..Default::default()
};
let c_src_path = tempdir_path.join("wasmer_main.c");
let mut libwasmer_path = get_libwasmer_path()?
.canonicalize()
.context("Failed to find libwasmer")?;
let lib_filename = libwasmer_path
.file_name()
.unwrap()
.to_str()
.unwrap()
.to_string();
libwasmer_path.pop();
if let Some(entrypoint) = pirita_main_atom.as_ref() {
let c_code = Self::generate_pirita_wasmer_main_c_static(pirita_atoms, entrypoint);
std::fs::write(&c_src_path, c_code)?;
} else {
std::fs::write(&c_src_path, WASMER_STATIC_MAIN_C_SOURCE)?;
}
if !header_code_path.is_dir() {
header_code_path.pop();
}
if header_code_path.display().to_string().is_empty() {
header_code_path = std::env::current_dir()?;
}
let wasmer_include_dir = get_wasmer_include_directory()?;
let wasmer_h_path = wasmer_include_dir.join("wasmer.h");
if !wasmer_h_path.exists() {
return Err(anyhow::anyhow!(
"Could not find wasmer.h in {}",
wasmer_include_dir.display()
));
}
let wasm_h_path = wasmer_include_dir.join("wasm.h");
if !wasm_h_path.exists() {
return Err(anyhow::anyhow!(
"Could not find wasm.h in {}",
wasmer_include_dir.display()
));
}
std::fs::copy(wasmer_h_path, header_code_path.join("wasmer.h"))?;
std::fs::copy(wasm_h_path, header_code_path.join("wasm.h"))?;
/* Compile main function */
let compilation = {
Command::new("cc")
.arg("-c")
.arg(&c_src_path)
.arg(if linkcode.optimization_flag.is_empty() {
"-O2"
} else {
linkcode.optimization_flag.as_str()
})
.arg(&format!("-L{}", libwasmer_path.display()))
.arg(&format!("-l:{}", lib_filename))
//.arg("-lwasmer")
// Add libraries required per platform.
// We need userenv, sockets (Ws2_32), advapi32 for some system calls and bcrypt for random numbers.
//#[cfg(windows)]
// .arg("-luserenv")
// .arg("-lWs2_32")
// .arg("-ladvapi32")
// .arg("-lbcrypt")
// On unix we need dlopen-related symbols, libmath for a few things, and pthreads.
//#[cfg(not(windows))]
.arg("-ldl")
.arg("-lm")
.arg("-pthread")
.arg(&format!("-I{}", header_code_path.display()))
.arg("-v")
.arg("-o")
.arg("main_obj.obj")
.output()?
};
if !compilation.status.success() {
return Err(anyhow::anyhow!(String::from_utf8_lossy(
&compilation.stderr
)
.to_string()));
}
linkcode.run().context("Failed to link objects together")?;
Ok(())
}
}
#[test]
fn test_normalize_atom_name() {
assert_eq!(
CreateExe::normalize_atom_name("atom-name-with-dash"),
"atom_name_with_dash".to_string()
);
}
fn triple_to_zig_triple(target_triple: &Triple) -> String {
let arch = match target_triple.architecture {
wasmer_types::Architecture::X86_64 => "x86_64".into(),
wasmer_types::Architecture::Aarch64(wasmer_types::Aarch64Architecture::Aarch64) => {
"aarch64".into()
}
v => v.to_string(),
};
let os = match target_triple.operating_system {
wasmer_types::OperatingSystem::Linux => "linux".into(),
wasmer_types::OperatingSystem::Darwin => "macos".into(),
wasmer_types::OperatingSystem::Windows => "windows".into(),
v => v.to_string(),
};
let env = match target_triple.environment {
wasmer_types::Environment::Musl => "musl",
wasmer_types::Environment::Gnu => "gnu",
wasmer_types::Environment::Msvc => "msvc",
_ => "none",
};
format!("{}-{}-{}", arch, os, env)
}
fn get_wasmer_dir() -> anyhow::Result<PathBuf> {
Ok(PathBuf::from(
env::var("WASMER_DIR")
.or_else(|e| {
option_env!("WASMER_INSTALL_PREFIX")
.map(str::to_string)
.ok_or(e)
})
.context("Trying to read env var `WASMER_DIR`")?,
))
}
fn get_wasmer_include_directory() -> anyhow::Result<PathBuf> {
let mut path = get_wasmer_dir()?;
if path.clone().join("wasmer.h").exists() {
return Ok(path);
}
path.push("include");
if !path.clone().join("wasmer.h").exists() {
println!(
"wasmer.h does not exist in {}, will probably default to the system path",
path.canonicalize().unwrap().display()
);
}
Ok(path)
}
/// path to the static libwasmer
fn get_libwasmer_path() -> anyhow::Result<PathBuf> {
let path = get_wasmer_dir()?;
// TODO: prefer headless Wasmer if/when it's a separate library.
#[cfg(not(windows))]
let libwasmer_static_name = "libwasmer.a";
#[cfg(windows)]
let libwasmer_static_name = "libwasmer.lib";
if path.exists() && path.join(libwasmer_static_name).exists() {
Ok(path.join(libwasmer_static_name))
} else {
Ok(path.join("lib").join(libwasmer_static_name))
}
}
/// path to library tarball cache dir
fn get_libwasmer_cache_path() -> anyhow::Result<PathBuf> {
let mut path = get_wasmer_dir()?;
path.push("cache");
let _ = std::fs::create_dir(&path);
Ok(path)
}
/// Compile the C code.
fn run_c_compile(
path_to_c_src: &Path,
output_name: &Path,
target: Option<Triple>,
) -> anyhow::Result<()> {
#[cfg(not(windows))]
let c_compiler = "cc";
// We must use a C++ compiler on Windows because wasm.h uses `static_assert`
// which isn't available in `clang` on Windows.
#[cfg(windows)]
let c_compiler = "clang++";
let mut command = Command::new(c_compiler);
let command = command
.arg("-Wall")
.arg("-O2")
.arg("-c")
.arg(path_to_c_src)
.arg("-I")
.arg(get_wasmer_include_directory()?);
let command = if let Some(target) = target {
command.arg("-target").arg(format!("{}", target))
} else {
command
};
let output = command.arg("-o").arg(output_name).output()?;
eprintln!(
"run_c_compile: stdout: {}\n\nstderr: {}",
std::str::from_utf8(&output.stdout)
.expect("stdout is not utf8! need to handle arbitrary bytes"),
std::str::from_utf8(&output.stderr)
.expect("stderr is not utf8! need to handle arbitrary bytes")
);
if !output.status.success() {
bail!(
"C code compile failed with: stdout: {}\n\nstderr: {}",
std::str::from_utf8(&output.stdout)
.expect("stdout is not utf8! need to handle arbitrary bytes"),
std::str::from_utf8(&output.stderr)
.expect("stderr is not utf8! need to handle arbitrary bytes")
);
}
Ok(())
}
/// Data used to run a linking command for generated artifacts.
#[derive(Debug)]
struct LinkCode {
/// Path to the linker used to run the linking command.
linker_path: PathBuf,
/// String used as an optimization flag.
optimization_flag: String,
/// Paths of objects to link.
object_paths: Vec<PathBuf>,
/// Additional libraries to link against.
additional_libraries: Vec<String>,
/// Path to the output target.
output_path: PathBuf,
/// Path to the dir containing the static libwasmer library.
libwasmer_path: PathBuf,
/// The target to link the executable for.
target: Option<Triple>,
}
impl Default for LinkCode {
fn default() -> Self {
#[cfg(not(windows))]
let linker = "cc";
#[cfg(windows)]
let linker = "clang";
Self {
linker_path: PathBuf::from(linker),
optimization_flag: String::from("-O2"),
object_paths: vec![],
additional_libraries: vec![],
output_path: PathBuf::from("a.out"),
libwasmer_path: get_libwasmer_path().unwrap(),
target: None,
}
}
}
impl LinkCode {
fn run(&self) -> anyhow::Result<()> {
let libwasmer_path = self
.libwasmer_path
.canonicalize()
.context("Failed to find libwasmer")?;
println!(
"Using path `{}` as libwasmer path.",
libwasmer_path.display()
);
let mut command = Command::new(&self.linker_path);
let command = command
.arg("-Wall")
.arg(&self.optimization_flag)
.args(
self.object_paths
.iter()
.map(|path| path.canonicalize().unwrap()),
)
.arg(&libwasmer_path);
let command = if let Some(target) = &self.target {
command.arg("-target").arg(format!("{}", target))
} else {
command
};
// Add libraries required per platform.
// We need userenv, sockets (Ws2_32), advapi32 for some system calls and bcrypt for random numbers.
#[cfg(windows)]
let command = command
.arg("-luserenv")
.arg("-lWs2_32")
.arg("-ladvapi32")
.arg("-lbcrypt");
// On unix we need dlopen-related symbols, libmath for a few things, and pthreads.
#[cfg(not(windows))]
let command = command.arg("-ldl").arg("-lm").arg("-pthread");
let link_against_extra_libs = self
.additional_libraries
.iter()
.map(|lib| format!("-l{}", lib));
let command = command.args(link_against_extra_libs);
let command = command.arg("-o").arg(&self.output_path);
let output = command.output()?;
if !output.status.success() {
bail!(
"linking failed with: stdout: {}\n\nstderr: {}",
std::str::from_utf8(&output.stdout)
.expect("stdout is not utf8! need to handle arbitrary bytes"),
std::str::from_utf8(&output.stderr)
.expect("stderr is not utf8! need to handle arbitrary bytes")
);
}
Ok(())
}
}
mod http_fetch {
use anyhow::{anyhow, Context, Result};
use http_req::{request::Request, response::StatusCode, uri::Uri};
use std::convert::TryFrom;
use target_lexicon::OperatingSystem;
pub fn get_latest_release() -> Result<serde_json::Value> {
let mut writer = Vec::new();
let uri = Uri::try_from("https://api.github.com/repos/wasmerio/wasmer/releases").unwrap();
// Increases rate-limiting in GitHub CI
let auth = std::env::var("GITHUB_TOKEN");
let mut response = Request::new(&uri);
if let Ok(token) = auth {
response.header("Authorization", &format!("Bearer {token}"));
}
let response = response
.header("User-Agent", "wasmerio")
.header("Accept", "application/vnd.github.v3+json")
.timeout(Some(std::time::Duration::new(30, 0)))
.send(&mut writer)
.map_err(anyhow::Error::new)
.context("Could not lookup wasmer repository on Github.")?;
if response.status_code() != StatusCode::new(200) {
#[cfg(feature = "debug")]
log::warn!(
"Warning: Github API replied with non-200 status code: {}. Response: {}",
response.status_code(),
String::from_utf8_lossy(&writer),
);
}
let v: std::result::Result<serde_json::Value, _> = serde_json::from_reader(&*writer);
let mut response = v.map_err(anyhow::Error::new)?;
if let Some(releases) = response.as_array_mut() {
releases.retain(|r| {
r["tag_name"].is_string() && !r["tag_name"].as_str().unwrap().is_empty()
});
releases.sort_by_cached_key(|r| r["tag_name"].as_str().unwrap_or_default().to_string());
if let Some(latest) = releases.pop() {
return Ok(latest);
}
}
Err(anyhow!(
"Could not get expected Github API response.\n\nReason: response format is not recognized:\n{response:#?}",
))
}
pub fn download_release(
mut release: serde_json::Value,
target_triple: wasmer::Triple,
) -> Result<std::path::PathBuf> {
let check_arch = |name: &str| -> bool {
match target_triple.architecture {
wasmer_types::Architecture::X86_64 => {
name.contains("x86_64") || name.contains("amd64")
}
wasmer_types::Architecture::Aarch64(wasmer_types::Aarch64Architecture::Aarch64) => {
name.contains("arm64") || name.contains("aarch64")
}
_ => false,
}
};
let check_vendor = |name: &str| -> bool {
match target_triple.vendor {
wasmer_types::Vendor::Apple => {
name.contains("apple") || name.contains("macos") || name.contains("darwin")
}
wasmer_types::Vendor::Pc => name.contains("windows"),
_ => true,
}
};
let check_os = |name: &str| -> bool {
match target_triple.operating_system {
wasmer_types::OperatingSystem::Darwin => {
name.contains("apple") || name.contains("darwin") || name.contains("macos")
}
wasmer_types::OperatingSystem::Windows => name.contains("windows"),
wasmer_types::OperatingSystem::Linux => name.contains("linux"),
_ => false,
}
};
let check_env = |name: &str| -> bool {
match target_triple.environment {
wasmer_types::Environment::Musl => name.contains("musl"),
_ => !name.contains("musl"),
}
};
// Test if file has been already downloaded
if let Ok(mut cache_path) = super::get_libwasmer_cache_path() {
let paths = std::fs::read_dir(&cache_path).and_then(|r| {
r.map(|res| res.map(|e| e.path()))
.collect::<Result<Vec<_>, std::io::Error>>()
});
if let Ok(mut entries) = paths {
entries.retain(|p| p.to_str().map(|p| p.ends_with(".tar.gz")).unwrap_or(false));
// create-exe on Windows is special: we use the windows-gnu64.tar.gz (GNU ABI)
// to link, not the windows-amd64.tar.gz (MSVC ABI)
if target_triple.operating_system == OperatingSystem::Windows {
entries.retain(|p| {
p.to_str()
.map(|p| p.contains("windows") && p.contains("gnu64"))
.unwrap_or(false)
});
} else {
entries.retain(|p| p.to_str().map(|p| check_arch(p)).unwrap_or(true));
entries.retain(|p| p.to_str().map(|p| check_vendor(p)).unwrap_or(true));
entries.retain(|p| p.to_str().map(|p| check_os(p)).unwrap_or(true));
entries.retain(|p| p.to_str().map(|p| check_env(p)).unwrap_or(true));
}
if !entries.is_empty() {
cache_path.push(&entries[0]);
if cache_path.exists() {
eprintln!(
"Using cached tarball to cache path `{}`.",
cache_path.display()
);
return Ok(cache_path);
}
}
}
}
let assets = match release["assets"].as_array_mut() {
Some(s) => s,
None => {
return Err(anyhow!(
"GitHub API: no [assets] array in JSON response for latest releases"
));
}
};
// create-exe on Windows is special: we use the windows-gnu64.tar.gz (GNU ABI)
// to link, not the windows-amd64.tar.gz (MSVC ABI)
if target_triple.operating_system == OperatingSystem::Windows {
assets.retain(|a| {
if let Some(name) = a["name"].as_str() {
name.contains("windows") && name.contains("gnu64")
} else {
false
}
});
} else {
assets.retain(|a| {
if let Some(name) = a["name"].as_str() {
check_arch(name)
} else {
false
}
});
assets.retain(|a| {
if let Some(name) = a["name"].as_str() {
check_vendor(name)
} else {
false
}
});
assets.retain(|a| {
if let Some(name) = a["name"].as_str() {
check_os(name)
} else {
false
}
});
assets.retain(|a| {
if let Some(name) = a["name"].as_str() {
check_env(name)
} else {
false
}
});
}
if assets.len() != 1 {
return Err(anyhow!(
"GitHub API: more that one release selected for target {target_triple}: {assets:?}"
));
}
let browser_download_url = if let Some(url) = assets[0]["browser_download_url"].as_str() {
url.to_string()
} else {
return Err(anyhow!(
"Could not get download url from Github API response."
));
};
let filename = browser_download_url
.split('/')
.last()
.unwrap_or("output")
.to_string();
let download_tempdir = tempdir::TempDir::new("wasmer-download")?;
let download_path = download_tempdir.path().join(&filename);
let mut file = std::fs::File::create(&download_path)?;
#[cfg(feature = "debug")]
log::debug!(
"Downloading {} to {}",
browser_download_url,
download_path.display()
);
let mut response = reqwest::blocking::Client::builder()
.redirect(reqwest::redirect::Policy::limited(10))
.timeout(std::time::Duration::from_secs(10))
.build()
.map_err(anyhow::Error::new)
.context("Could not lookup wasmer artifact on Github.")?
.get(browser_download_url.as_str())
.send()
.map_err(anyhow::Error::new)
.context("Could not lookup wasmer artifact on Github.")?;
response
.copy_to(&mut file)
.map_err(|e| anyhow::anyhow!("{e}"))?;
match super::get_libwasmer_cache_path() {
Ok(mut cache_path) => {
cache_path.push(&filename);
if let Err(err) = std::fs::copy(&download_path, &cache_path) {
eprintln!(
"Could not store tarball to cache path `{}`: {}",
cache_path.display(),
err
);
Err(anyhow!(
"Could not copy from {} to {}",
download_path.display(),
cache_path.display()
))
} else {
eprintln!("Cached tarball to cache path `{}`.", cache_path.display());
Ok(cache_path)
}
}
Err(err) => {
eprintln!(
"Could not determine cache path for downloaded binaries.: {}",
err
);
Err(anyhow!("Could not determine libwasmer cache path"))
}
}
}
}
fn untar(tarball: std::path::PathBuf, target: std::path::PathBuf) -> Result<Vec<String>> {
use walkdir::WalkDir;
wasmer_registry::try_unpack_targz(&tarball, &target, false)?;
Ok(WalkDir::new(&target)
.into_iter()
.filter_map(|e| e.ok())
.map(|entry| format!("{}", entry.path().display()))
.collect())
}
fn get_zig_exe_str() -> &'static str {
#[cfg(target_os = "windows")]
{
"zig.exe"
}
#[cfg(not(target_os = "windows"))]
{
"zig"
}
}
fn find_zig_binary(path: Option<PathBuf>) -> Result<PathBuf> {
use std::env::split_paths;
use std::ffi::OsStr;
#[cfg(unix)]
use std::os::unix::ffi::OsStrExt;
let path_var = std::env::var("PATH").unwrap_or_default();
#[cfg(unix)]
let system_path_var = std::process::Command::new("getconf")
.args(&["PATH"])
.output()
.map(|output| output.stdout)
.unwrap_or_default();
let retval = if let Some(p) = path {
if p.exists() {
p
} else {
return Err(anyhow!("Could not find `zig` binary in {}.", p.display()));
}
} else {
let mut retval = None;
for mut p in split_paths(&path_var).chain(split_paths(
#[cfg(unix)]
{
&OsStr::from_bytes(&system_path_var[..])
},
#[cfg(not(unix))]
{
OsStr::new("")
},
)) {
p.push(get_zig_exe_str());
if p.exists() {
retval = Some(p);
break;
}
}
retval.ok_or_else(|| anyhow!("Could not find `zig` binary in PATH."))?
};
let version = std::process::Command::new(&retval)
.arg("version")
.output()
.with_context(|| {
format!(
"Could not execute `zig` binary at path `{}`",
retval.display()
)
})?
.stdout;
let version_slice = if let Some(pos) = version
.iter()
.position(|c| !(c.is_ascii_digit() || (*c == b'.')))
{
&version[..pos]
} else {
&version[..]
};
if version_slice < b"0.10.0".as_ref() {
Err(anyhow!("`zig` binary in PATH (`{}`) is not a new enough version (`{}`): please use version `0.10.0` or newer.", retval.display(), String::from_utf8_lossy(version_slice)))
} else {
Ok(retval)
}
}