use super::{ abi, intrinsics::{ tbaa_label, type_to_llvm, CtxType, FunctionCache, GlobalCache, Intrinsics, MemoryCache, }, read_info::{blocktype_to_param_types, blocktype_to_types}, // stackmap::{StackmapEntry, StackmapEntryKind, StackmapRegistry, ValueSemantic}, state::{ControlFrame, ExtraInfo, IfElseState, State}, }; use inkwell::{ attributes::AttributeLoc, builder::Builder, context::Context, module::{Linkage, Module}, passes::PassManager, targets::FileType, types::{ BasicType, BasicTypeEnum, FloatMathType, IntType, PointerType, StructType, VectorType, }, values::{ BasicValue, BasicValueEnum, FloatValue, FunctionValue, InstructionOpcode, InstructionValue, IntValue, PhiValue, PointerValue, VectorValue, }, AddressSpace, AtomicOrdering, AtomicRMWBinOp, FloatPredicate, IntPredicate, }; use smallvec::SmallVec; use crate::config::{CompiledFunctionKind, LLVMConfig}; use crate::object_file::load_object_file; use wasm_common::entity::{PrimaryMap, SecondaryMap}; use wasm_common::{ FunctionIndex, FunctionType, GlobalIndex, LocalFunctionIndex, MemoryIndex, SignatureIndex, TableIndex, Type, }; use wasmer_compiler::wasmparser::{BinaryReader, MemoryImmediate, Operator}; use wasmer_compiler::{ to_wasm_error, wptype_to_type, CompileError, CompiledFunction, CustomSections, FunctionBodyData, RelocationTarget, }; use wasmer_runtime::{MemoryPlan, ModuleInfo, TablePlan}; // TODO: move this into inkwell. fn const_zero(ty: BasicTypeEnum) -> BasicValueEnum { match ty { BasicTypeEnum::ArrayType(ty) => ty.const_zero().as_basic_value_enum(), BasicTypeEnum::FloatType(ty) => ty.const_zero().as_basic_value_enum(), BasicTypeEnum::IntType(ty) => ty.const_zero().as_basic_value_enum(), BasicTypeEnum::PointerType(ty) => ty.const_zero().as_basic_value_enum(), BasicTypeEnum::StructType(ty) => ty.const_zero().as_basic_value_enum(), BasicTypeEnum::VectorType(ty) => ty.const_zero().as_basic_value_enum(), } } pub struct FuncTranslator { ctx: Context, } impl FuncTranslator { pub fn new() -> Self { Self { ctx: Context::create(), } } pub fn translate( &mut self, wasm_module: &ModuleInfo, local_func_index: &LocalFunctionIndex, function_body: &FunctionBodyData, config: &LLVMConfig, memory_plans: &PrimaryMap, _table_plans: &PrimaryMap, func_names: &SecondaryMap, ) -> Result<(CompiledFunction, CustomSections), CompileError> { // The function type, used for the callbacks. let function = CompiledFunctionKind::Local(local_func_index.clone()); let func_index = wasm_module.func_index(*local_func_index); let func_name = &func_names[func_index]; let module_name = match wasm_module.name.as_ref() { None => format!(" function {}", func_name), Some(module_name) => format!("module {} function {}", module_name, func_name), }; let module = self.ctx.create_module(module_name.as_str()); let target_triple = config.target_triple(); let target_machine = config.target_machine(); module.set_triple(&target_triple); module.set_data_layout(&target_machine.get_target_data().get_data_layout()); let wasm_fn_type = wasm_module .signatures .get(wasm_module.functions[func_index]) .unwrap(); let intrinsics = Intrinsics::declare(&module, &self.ctx); let (func_type, func_attrs) = abi::func_type_to_llvm(&self.ctx, &intrinsics, wasm_fn_type); let func = module.add_function(&func_name, func_type, Some(Linkage::External)); for (attr, attr_loc) in func_attrs { func.add_attribute(attr_loc, attr); } // TODO: mark vmctx align 16 // TODO: figure out how many bytes long vmctx is, and mark it dereferenceable. (no need to mark it nonnull once we do this.) // TODO: mark vmctx nofree func.add_attribute(AttributeLoc::Function, intrinsics.stack_probe); func.set_personality_function(intrinsics.personality); func.as_global_value().set_section(".wasmer_function"); let entry = self.ctx.append_basic_block(func, "entry"); let start_of_code = self.ctx.append_basic_block(func, "start_of_code"); let return_ = self.ctx.append_basic_block(func, "return"); let cache_builder = self.ctx.create_builder(); let builder = self.ctx.create_builder(); cache_builder.position_at_end(entry); let br = cache_builder.build_unconditional_branch(start_of_code); cache_builder.position_before(&br); builder.position_at_end(start_of_code); let mut state = State::new(); builder.position_at_end(return_); let phis: SmallVec<[PhiValue; 1]> = wasm_fn_type .results() .iter() .map(|&wasm_ty| type_to_llvm(&intrinsics, wasm_ty)) .map(|ty| builder.build_phi(ty, "")) .collect(); state.push_block(return_, phis); builder.position_at_end(start_of_code); let mut reader = BinaryReader::new_with_offset(function_body.data, function_body.module_offset); let mut params = vec![]; let first_param = if func_type.get_return_type().is_none() && wasm_fn_type.results().len() > 1 { 2 } else { 1 }; for idx in 0..wasm_fn_type.params().len() { let ty = wasm_fn_type.params()[idx]; let ty = type_to_llvm(&intrinsics, ty); let value = func .get_nth_param((idx as u32).checked_add(first_param).unwrap()) .unwrap(); // TODO: don't interleave allocas and stores. let alloca = cache_builder.build_alloca(ty, "param"); cache_builder.build_store(alloca, value); params.push(alloca); } let mut locals = vec![]; let num_locals = reader.read_local_count().map_err(to_wasm_error)?; for _ in 0..num_locals { let mut counter = 0; let (count, ty) = reader .read_local_decl(&mut counter) .map_err(to_wasm_error)?; let ty = wptype_to_type(ty)?; let ty = type_to_llvm(&intrinsics, ty); // TODO: don't interleave allocas and stores. for _ in 0..count { let alloca = cache_builder.build_alloca(ty, "local"); cache_builder.build_store(alloca, const_zero(ty)); locals.push(alloca); } } let mut params_locals = params.clone(); params_locals.extend(locals.iter().cloned()); let mut fcg = LLVMFunctionCodeGenerator { context: &self.ctx, builder, intrinsics: &intrinsics, state, function: func, locals: params_locals, ctx: CtxType::new(wasm_module, &func, &cache_builder), unreachable_depth: 0, memory_plans, _table_plans, module: &module, wasm_module, func_names, }; while fcg.state.has_control_frames() { let pos = reader.current_position() as u32; let op = reader.read_operator().map_err(to_wasm_error)?; fcg.translate_operator(op, pos)?; } fcg.finalize(wasm_fn_type)?; if let Some(ref callbacks) = config.callbacks { callbacks.preopt_ir(&function, &module); } let pass_manager = PassManager::create(()); if config.enable_verifier { pass_manager.add_verifier_pass(); } pass_manager.add_type_based_alias_analysis_pass(); pass_manager.add_ipsccp_pass(); pass_manager.add_prune_eh_pass(); pass_manager.add_dead_arg_elimination_pass(); pass_manager.add_function_inlining_pass(); pass_manager.add_lower_expect_intrinsic_pass(); pass_manager.add_scalar_repl_aggregates_pass(); pass_manager.add_instruction_combining_pass(); pass_manager.add_jump_threading_pass(); pass_manager.add_correlated_value_propagation_pass(); pass_manager.add_cfg_simplification_pass(); pass_manager.add_reassociate_pass(); pass_manager.add_loop_rotate_pass(); pass_manager.add_loop_unswitch_pass(); pass_manager.add_ind_var_simplify_pass(); pass_manager.add_licm_pass(); pass_manager.add_loop_vectorize_pass(); pass_manager.add_instruction_combining_pass(); pass_manager.add_ipsccp_pass(); pass_manager.add_reassociate_pass(); pass_manager.add_cfg_simplification_pass(); pass_manager.add_gvn_pass(); pass_manager.add_memcpy_optimize_pass(); pass_manager.add_dead_store_elimination_pass(); pass_manager.add_bit_tracking_dce_pass(); pass_manager.add_instruction_combining_pass(); pass_manager.add_reassociate_pass(); pass_manager.add_cfg_simplification_pass(); pass_manager.add_slp_vectorize_pass(); pass_manager.add_early_cse_pass(); pass_manager.run_on(&module); if let Some(ref callbacks) = config.callbacks { callbacks.postopt_ir(&function, &module); } let memory_buffer = target_machine .write_to_memory_buffer(&module, FileType::Object) .unwrap(); if let Some(ref callbacks) = config.callbacks { callbacks.obj_memory_buffer(&function, &memory_buffer); } let mem_buf_slice = memory_buffer.as_slice(); load_object_file( mem_buf_slice, ".wasmer_function", Some(RelocationTarget::LocalFunc(*local_func_index)), |name: &String| { if let Some((index, _)) = func_names .iter() .find(|(_, func_name)| **func_name == *name) { let local_index = wasm_module .local_func_index(index) .expect("relocation to non-local function"); Ok(Some(RelocationTarget::LocalFunc(local_index))) } else { Ok(None) } }, ) } } impl<'ctx, 'a> LLVMFunctionCodeGenerator<'ctx, 'a> { // Create a vector where each lane contains the same value. fn splat_vector( &self, value: BasicValueEnum<'ctx>, vec_ty: VectorType<'ctx>, ) -> VectorValue<'ctx> { // Use insert_element to insert the element into an undef vector, then use // shuffle vector to copy that lane to all lanes. self.builder.build_shuffle_vector( self.builder.build_insert_element( vec_ty.get_undef(), value, self.intrinsics.i32_zero, "", ), vec_ty.get_undef(), self.intrinsics .i32_ty .vec_type(vec_ty.get_size()) .const_zero(), "", ) } // Convert floating point vector to integer and saturate when out of range. // https://github.com/WebAssembly/nontrapping-float-to-int-conversions/blob/master/proposals/nontrapping-float-to-int-conversion/Overview.md fn trunc_sat>( &self, fvec_ty: T, ivec_ty: T::MathConvType, lower_bound: u64, // Exclusive (lowest representable value) upper_bound: u64, // Exclusive (greatest representable value) int_min_value: u64, int_max_value: u64, value: IntValue<'ctx>, ) -> IntValue<'ctx> { // a) Compare vector with itself to identify NaN lanes. // b) Compare vector with splat of inttofp(upper_bound) to identify // lanes that need to saturate to max. // c) Compare vector with splat of inttofp(lower_bound) to identify // lanes that need to saturate to min. // d) Use vector select (not shuffle) to pick from either the // splat vector or the input vector depending on whether the // comparison indicates that we have an unrepresentable value. Replace // unrepresentable values with zero. // e) Now that the value is safe, fpto[su]i it. // f) Use our previous comparison results to replace certain zeros with // int_min or int_max. let fvec_ty = fvec_ty.as_basic_type_enum().into_vector_type(); let ivec_ty = ivec_ty.as_basic_type_enum().into_vector_type(); let fvec_element_ty = fvec_ty.get_element_type().into_float_type(); let ivec_element_ty = ivec_ty.get_element_type().into_int_type(); let is_signed = int_min_value != 0; let int_min_value = self.splat_vector( ivec_element_ty .const_int(int_min_value, is_signed) .as_basic_value_enum(), ivec_ty, ); let int_max_value = self.splat_vector( ivec_element_ty .const_int(int_max_value, is_signed) .as_basic_value_enum(), ivec_ty, ); let lower_bound = if is_signed { self.builder.build_signed_int_to_float( ivec_element_ty.const_int(lower_bound, is_signed), fvec_element_ty, "", ) } else { self.builder.build_unsigned_int_to_float( ivec_element_ty.const_int(lower_bound, is_signed), fvec_element_ty, "", ) }; let upper_bound = if is_signed { self.builder.build_signed_int_to_float( ivec_element_ty.const_int(upper_bound, is_signed), fvec_element_ty, "", ) } else { self.builder.build_unsigned_int_to_float( ivec_element_ty.const_int(upper_bound, is_signed), fvec_element_ty, "", ) }; let value = self .builder .build_bitcast(value, fvec_ty, "") .into_vector_value(); let zero = fvec_ty.const_zero(); let lower_bound = self.splat_vector(lower_bound.as_basic_value_enum(), fvec_ty); let upper_bound = self.splat_vector(upper_bound.as_basic_value_enum(), fvec_ty); let nan_cmp = self .builder .build_float_compare(FloatPredicate::UNO, value, zero, "nan"); let above_upper_bound_cmp = self.builder.build_float_compare( FloatPredicate::OGT, value, upper_bound, "above_upper_bound", ); let below_lower_bound_cmp = self.builder.build_float_compare( FloatPredicate::OLT, value, lower_bound, "below_lower_bound", ); let not_representable = self.builder.build_or( self.builder.build_or(nan_cmp, above_upper_bound_cmp, ""), below_lower_bound_cmp, "not_representable_as_int", ); let value = self .builder .build_select(not_representable, zero, value, "safe_to_convert") .into_vector_value(); let value = if is_signed { self.builder .build_float_to_signed_int(value, ivec_ty, "as_int") } else { self.builder .build_float_to_unsigned_int(value, ivec_ty, "as_int") }; let value = self .builder .build_select(above_upper_bound_cmp, int_max_value, value, "") .into_vector_value(); let res = self .builder .build_select(below_lower_bound_cmp, int_min_value, value, "") .into_vector_value(); self.builder .build_bitcast(res, self.intrinsics.i128_ty, "") .into_int_value() } // Convert floating point vector to integer and saturate when out of range. // https://github.com/WebAssembly/nontrapping-float-to-int-conversions/blob/master/proposals/nontrapping-float-to-int-conversion/Overview.md fn trunc_sat_scalar( &self, int_ty: IntType<'ctx>, lower_bound: u64, // Exclusive (lowest representable value) upper_bound: u64, // Exclusive (greatest representable value) int_min_value: u64, int_max_value: u64, value: FloatValue<'ctx>, ) -> IntValue<'ctx> { // TODO: this is a scalarized version of the process in trunc_sat. Either // we should merge with trunc_sat, or we should simplify this function. // a) Compare value with itself to identify NaN. // b) Compare value inttofp(upper_bound) to identify values that need to // saturate to max. // c) Compare value with inttofp(lower_bound) to identify values that need // to saturate to min. // d) Use select to pick from either zero or the input vector depending on // whether the comparison indicates that we have an unrepresentable // value. // e) Now that the value is safe, fpto[su]i it. // f) Use our previous comparison results to replace certain zeros with // int_min or int_max. let is_signed = int_min_value != 0; let int_min_value = int_ty.const_int(int_min_value, is_signed); let int_max_value = int_ty.const_int(int_max_value, is_signed); let lower_bound = if is_signed { self.builder.build_signed_int_to_float( int_ty.const_int(lower_bound, is_signed), value.get_type(), "", ) } else { self.builder.build_unsigned_int_to_float( int_ty.const_int(lower_bound, is_signed), value.get_type(), "", ) }; let upper_bound = if is_signed { self.builder.build_signed_int_to_float( int_ty.const_int(upper_bound, is_signed), value.get_type(), "", ) } else { self.builder.build_unsigned_int_to_float( int_ty.const_int(upper_bound, is_signed), value.get_type(), "", ) }; let zero = value.get_type().const_zero(); let nan_cmp = self .builder .build_float_compare(FloatPredicate::UNO, value, zero, "nan"); let above_upper_bound_cmp = self.builder.build_float_compare( FloatPredicate::OGT, value, upper_bound, "above_upper_bound", ); let below_lower_bound_cmp = self.builder.build_float_compare( FloatPredicate::OLT, value, lower_bound, "below_lower_bound", ); let not_representable = self.builder.build_or( self.builder.build_or(nan_cmp, above_upper_bound_cmp, ""), below_lower_bound_cmp, "not_representable_as_int", ); let value = self .builder .build_select(not_representable, zero, value, "safe_to_convert") .into_float_value(); let value = if is_signed { self.builder .build_float_to_signed_int(value, int_ty, "as_int") } else { self.builder .build_float_to_unsigned_int(value, int_ty, "as_int") }; let value = self .builder .build_select(above_upper_bound_cmp, int_max_value, value, "") .into_int_value(); let value = self .builder .build_select(below_lower_bound_cmp, int_min_value, value, "") .into_int_value(); self.builder .build_bitcast(value, int_ty, "") .into_int_value() } fn trap_if_not_representable_as_int( &self, lower_bound: u64, // Inclusive (not a trapping value) upper_bound: u64, // Inclusive (not a trapping value) value: FloatValue, ) { let float_ty = value.get_type(); let int_ty = if float_ty == self.intrinsics.f32_ty { self.intrinsics.i32_ty } else { self.intrinsics.i64_ty }; let lower_bound = self .builder .build_bitcast(int_ty.const_int(lower_bound, false), float_ty, "") .into_float_value(); let upper_bound = self .builder .build_bitcast(int_ty.const_int(upper_bound, false), float_ty, "") .into_float_value(); // The 'U' in the float predicate is short for "unordered" which means that // the comparison will compare true if either operand is a NaN. Thus, NaNs // are out of bounds. let above_upper_bound_cmp = self.builder.build_float_compare( FloatPredicate::UGT, value, upper_bound, "above_upper_bound", ); let below_lower_bound_cmp = self.builder.build_float_compare( FloatPredicate::ULT, value, lower_bound, "below_lower_bound", ); let out_of_bounds = self.builder.build_or( above_upper_bound_cmp, below_lower_bound_cmp, "out_of_bounds", ); let failure_block = self .context .append_basic_block(self.function, "conversion_failure_block"); let continue_block = self .context .append_basic_block(self.function, "conversion_success_block"); self.builder .build_conditional_branch(out_of_bounds, failure_block, continue_block); self.builder.position_at_end(failure_block); let is_nan = self .builder .build_float_compare(FloatPredicate::UNO, value, value, "is_nan"); let trap_code = self.builder.build_select( is_nan, self.intrinsics.trap_bad_conversion_to_integer, self.intrinsics.trap_illegal_arithmetic, "", ); self.builder .build_call(self.intrinsics.throw_trap, &[trap_code], "throw"); self.builder.build_unreachable(); self.builder.position_at_end(continue_block); } fn trap_if_zero_or_overflow(&self, left: IntValue, right: IntValue) { let int_type = left.get_type(); let (min_value, neg_one_value) = if int_type == self.intrinsics.i32_ty { let min_value = int_type.const_int(i32::min_value() as u64, false); let neg_one_value = int_type.const_int(-1i32 as u32 as u64, false); (min_value, neg_one_value) } else if int_type == self.intrinsics.i64_ty { let min_value = int_type.const_int(i64::min_value() as u64, false); let neg_one_value = int_type.const_int(-1i64 as u64, false); (min_value, neg_one_value) } else { unreachable!() }; let divisor_is_zero = self.builder.build_int_compare( IntPredicate::EQ, right, int_type.const_int(0, false), "divisor_is_zero", ); let should_trap = self.builder.build_or( divisor_is_zero, self.builder.build_and( self.builder .build_int_compare(IntPredicate::EQ, left, min_value, "left_is_min"), self.builder.build_int_compare( IntPredicate::EQ, right, neg_one_value, "right_is_neg_one", ), "div_will_overflow", ), "div_should_trap", ); let should_trap = self .builder .build_call( self.intrinsics.expect_i1, &[ should_trap.as_basic_value_enum(), self.intrinsics .i1_ty .const_int(0, false) .as_basic_value_enum(), ], "should_trap_expect", ) .try_as_basic_value() .left() .unwrap() .into_int_value(); let shouldnt_trap_block = self .context .append_basic_block(self.function, "shouldnt_trap_block"); let should_trap_block = self .context .append_basic_block(self.function, "should_trap_block"); self.builder .build_conditional_branch(should_trap, should_trap_block, shouldnt_trap_block); self.builder.position_at_end(should_trap_block); let trap_code = self.builder.build_select( divisor_is_zero, self.intrinsics.trap_integer_division_by_zero, self.intrinsics.trap_illegal_arithmetic, "", ); self.builder .build_call(self.intrinsics.throw_trap, &[trap_code], "throw"); self.builder.build_unreachable(); self.builder.position_at_end(shouldnt_trap_block); } fn trap_if_zero(&self, value: IntValue) { let int_type = value.get_type(); let should_trap = self.builder.build_int_compare( IntPredicate::EQ, value, int_type.const_int(0, false), "divisor_is_zero", ); let should_trap = self .builder .build_call( self.intrinsics.expect_i1, &[ should_trap.as_basic_value_enum(), self.intrinsics .i1_ty .const_int(0, false) .as_basic_value_enum(), ], "should_trap_expect", ) .try_as_basic_value() .left() .unwrap() .into_int_value(); let shouldnt_trap_block = self .context .append_basic_block(self.function, "shouldnt_trap_block"); let should_trap_block = self .context .append_basic_block(self.function, "should_trap_block"); self.builder .build_conditional_branch(should_trap, should_trap_block, shouldnt_trap_block); self.builder.position_at_end(should_trap_block); self.builder.build_call( self.intrinsics.throw_trap, &[self.intrinsics.trap_integer_division_by_zero], "throw", ); self.builder.build_unreachable(); self.builder.position_at_end(shouldnt_trap_block); } fn v128_into_int_vec( &self, value: BasicValueEnum<'ctx>, info: ExtraInfo, int_vec_ty: VectorType<'ctx>, ) -> (VectorValue<'ctx>, ExtraInfo) { let (value, info) = if info.has_pending_f32_nan() { let value = self .builder .build_bitcast(value, self.intrinsics.f32x4_ty, ""); (self.canonicalize_nans(value), info.strip_pending()) } else if info.has_pending_f64_nan() { let value = self .builder .build_bitcast(value, self.intrinsics.f64x2_ty, ""); (self.canonicalize_nans(value), info.strip_pending()) } else { (value, info) }; ( self.builder .build_bitcast(value, int_vec_ty, "") .into_vector_value(), info, ) } fn v128_into_i8x16( &self, value: BasicValueEnum<'ctx>, info: ExtraInfo, ) -> (VectorValue<'ctx>, ExtraInfo) { self.v128_into_int_vec(value, info, self.intrinsics.i8x16_ty) } fn v128_into_i16x8( &self, value: BasicValueEnum<'ctx>, info: ExtraInfo, ) -> (VectorValue<'ctx>, ExtraInfo) { self.v128_into_int_vec(value, info, self.intrinsics.i16x8_ty) } fn v128_into_i32x4( &self, value: BasicValueEnum<'ctx>, info: ExtraInfo, ) -> (VectorValue<'ctx>, ExtraInfo) { self.v128_into_int_vec(value, info, self.intrinsics.i32x4_ty) } fn v128_into_i64x2( &self, value: BasicValueEnum<'ctx>, info: ExtraInfo, ) -> (VectorValue<'ctx>, ExtraInfo) { self.v128_into_int_vec(value, info, self.intrinsics.i64x2_ty) } // If the value is pending a 64-bit canonicalization, do it now. // Return a f32x4 vector. fn v128_into_f32x4( &self, value: BasicValueEnum<'ctx>, info: ExtraInfo, ) -> (VectorValue<'ctx>, ExtraInfo) { let (value, info) = if info.has_pending_f64_nan() { let value = self .builder .build_bitcast(value, self.intrinsics.f64x2_ty, ""); (self.canonicalize_nans(value), info.strip_pending()) } else { (value, info) }; ( self.builder .build_bitcast(value, self.intrinsics.f32x4_ty, "") .into_vector_value(), info, ) } // If the value is pending a 32-bit canonicalization, do it now. // Return a f64x2 vector. fn v128_into_f64x2( &self, value: BasicValueEnum<'ctx>, info: ExtraInfo, ) -> (VectorValue<'ctx>, ExtraInfo) { let (value, info) = if info.has_pending_f32_nan() { let value = self .builder .build_bitcast(value, self.intrinsics.f32x4_ty, ""); (self.canonicalize_nans(value), info.strip_pending()) } else { (value, info) }; ( self.builder .build_bitcast(value, self.intrinsics.f64x2_ty, "") .into_vector_value(), info, ) } fn apply_pending_canonicalization( &self, value: BasicValueEnum<'ctx>, info: ExtraInfo, ) -> BasicValueEnum<'ctx> { if info.has_pending_f32_nan() { if value.get_type().is_vector_type() || value.get_type() == self.intrinsics.i128_ty.as_basic_type_enum() { let ty = value.get_type(); let value = self .builder .build_bitcast(value, self.intrinsics.f32x4_ty, ""); let value = self.canonicalize_nans(value); self.builder.build_bitcast(value, ty, "") } else { self.canonicalize_nans(value) } } else if info.has_pending_f64_nan() { if value.get_type().is_vector_type() || value.get_type() == self.intrinsics.i128_ty.as_basic_type_enum() { let ty = value.get_type(); let value = self .builder .build_bitcast(value, self.intrinsics.f64x2_ty, ""); let value = self.canonicalize_nans(value); self.builder.build_bitcast(value, ty, "") } else { self.canonicalize_nans(value) } } else { value } } // Replaces any NaN with the canonical QNaN, otherwise leaves the value alone. fn canonicalize_nans(&self, value: BasicValueEnum<'ctx>) -> BasicValueEnum<'ctx> { let f_ty = value.get_type(); if f_ty.is_vector_type() { let value = value.into_vector_value(); let f_ty = f_ty.into_vector_type(); let zero = f_ty.const_zero(); let nan_cmp = self .builder .build_float_compare(FloatPredicate::UNO, value, zero, "nan"); let canonical_qnan = f_ty .get_element_type() .into_float_type() .const_float(std::f64::NAN); let canonical_qnan = self.splat_vector(canonical_qnan.as_basic_value_enum(), f_ty); self.builder .build_select(nan_cmp, canonical_qnan, value, "") .as_basic_value_enum() } else { let value = value.into_float_value(); let f_ty = f_ty.into_float_type(); let zero = f_ty.const_zero(); let nan_cmp = self .builder .build_float_compare(FloatPredicate::UNO, value, zero, "nan"); let canonical_qnan = f_ty.const_float(std::f64::NAN); self.builder .build_select(nan_cmp, canonical_qnan, value, "") .as_basic_value_enum() } } // If this memory access must trap when out of bounds (i.e. it is a memory // access written in the user program as opposed to one used by our VM) // then mark that it can't be delete. fn mark_memaccess_nodelete( &mut self, memory_index: MemoryIndex, memaccess: InstructionValue<'ctx>, ) -> Result<(), CompileError> { if let MemoryCache::Static { base_ptr: _ } = self.ctx.memory( memory_index, self.intrinsics, self.module, self.memory_plans, ) { // The best we've got is `volatile`. // TODO: convert unwrap fail to CompileError memaccess.set_volatile(true).unwrap(); } Ok(()) } fn annotate_user_memaccess( &mut self, memory_index: MemoryIndex, _memarg: &MemoryImmediate, alignment: u32, memaccess: InstructionValue<'ctx>, ) -> Result<(), CompileError> { match memaccess.get_opcode() { InstructionOpcode::Load | InstructionOpcode::Store => { memaccess.set_alignment(alignment).unwrap(); } _ => {} }; self.mark_memaccess_nodelete(memory_index, memaccess)?; tbaa_label( &self.module, self.intrinsics, format!("memory {}", memory_index.as_u32()), memaccess, ); Ok(()) } fn resolve_memory_ptr( &mut self, memory_index: MemoryIndex, memarg: &MemoryImmediate, ptr_ty: PointerType<'ctx>, var_offset: IntValue<'ctx>, value_size: usize, ) -> Result, CompileError> { let builder = &self.builder; let intrinsics = &self.intrinsics; let context = &self.context; let function = &self.function; // Compute the offset into the storage. let imm_offset = intrinsics.i64_ty.const_int(memarg.offset as u64, false); let var_offset = builder.build_int_z_extend(var_offset, intrinsics.i64_ty, ""); let offset = builder.build_int_add(var_offset, imm_offset, ""); // Look up the memory base (as pointer) and bounds (as unsigned integer). let base_ptr = match self .ctx .memory(memory_index, intrinsics, self.module, self.memory_plans) { MemoryCache::Dynamic { ptr_to_base_ptr, current_length_ptr, } => { // Bounds check it. let minimum = self.memory_plans[memory_index].memory.minimum; let value_size_v = intrinsics.i64_ty.const_int(value_size as u64, false); let ptr_in_bounds = if offset.is_const() { // When the offset is constant, if it's below the minimum // memory size, we've statically shown that it's safe. let load_offset_end = offset.const_add(value_size_v); let ptr_in_bounds = load_offset_end.const_int_compare( IntPredicate::ULE, intrinsics.i64_ty.const_int(minimum.bytes().0 as u64, false), ); if ptr_in_bounds.get_zero_extended_constant() == Some(1) { Some(ptr_in_bounds) } else { None } } else { None } .unwrap_or_else(|| { let load_offset_end = builder.build_int_add(offset, value_size_v, ""); let current_length = builder.build_load(current_length_ptr, "").into_int_value(); tbaa_label( self.module, self.intrinsics, format!("memory {} length", memory_index.as_u32()), current_length.as_instruction_value().unwrap(), ); builder.build_int_compare( IntPredicate::ULE, load_offset_end, current_length, "", ) }); if !ptr_in_bounds.is_constant_int() || ptr_in_bounds.get_zero_extended_constant().unwrap() != 1 { // LLVM may have folded this into 'i1 true' in which case we know // the pointer is in bounds. LLVM may also have folded it into a // constant expression, not known to be either true or false yet. // If it's false, unknown-but-constant, or not-a-constant, emit a // runtime bounds check. LLVM may yet succeed at optimizing it away. let ptr_in_bounds = builder .build_call( intrinsics.expect_i1, &[ ptr_in_bounds.as_basic_value_enum(), intrinsics.i1_ty.const_int(1, false).as_basic_value_enum(), ], "ptr_in_bounds_expect", ) .try_as_basic_value() .left() .unwrap() .into_int_value(); let in_bounds_continue_block = context.append_basic_block(*function, "in_bounds_continue_block"); let not_in_bounds_block = context.append_basic_block(*function, "not_in_bounds_block"); builder.build_conditional_branch( ptr_in_bounds, in_bounds_continue_block, not_in_bounds_block, ); builder.position_at_end(not_in_bounds_block); builder.build_call( intrinsics.throw_trap, &[intrinsics.trap_memory_oob], "throw", ); builder.build_unreachable(); builder.position_at_end(in_bounds_continue_block); } let ptr_to_base = builder.build_load(ptr_to_base_ptr, "").into_pointer_value(); tbaa_label( self.module, self.intrinsics, format!("memory base_ptr {}", memory_index.as_u32()), ptr_to_base.as_instruction_value().unwrap(), ); ptr_to_base } MemoryCache::Static { base_ptr } => base_ptr, }; let value_ptr = unsafe { builder.build_gep(base_ptr, &[offset], "") }; Ok(builder .build_bitcast(value_ptr, ptr_ty, "") .into_pointer_value()) } fn trap_if_misaligned(&self, memarg: &MemoryImmediate, ptr: PointerValue<'ctx>) { let align = match memarg.flags & 3 { 0 => { return; /* No alignment to check. */ } 1 => 2, 2 => 4, 3 => 8, _ => unreachable!("this match is fully covered"), }; let value = self .builder .build_ptr_to_int(ptr, self.intrinsics.i64_ty, ""); let and = self.builder.build_and( value, self.intrinsics.i64_ty.const_int(align - 1, false), "misaligncheck", ); let aligned = self.builder .build_int_compare(IntPredicate::EQ, and, self.intrinsics.i64_zero, ""); let aligned = self .builder .build_call( self.intrinsics.expect_i1, &[ aligned.as_basic_value_enum(), self.intrinsics .i1_ty .const_int(1, false) .as_basic_value_enum(), ], "", ) .try_as_basic_value() .left() .unwrap() .into_int_value(); let continue_block = self .context .append_basic_block(self.function, "aligned_access_continue_block"); let not_aligned_block = self .context .append_basic_block(self.function, "misaligned_trap_block"); self.builder .build_conditional_branch(aligned, continue_block, not_aligned_block); self.builder.position_at_end(not_aligned_block); self.builder.build_call( self.intrinsics.throw_trap, &[self.intrinsics.trap_unaligned_atomic], "throw", ); self.builder.build_unreachable(); self.builder.position_at_end(continue_block); } fn finalize(&mut self, wasm_fn_type: &FunctionType) -> Result<(), CompileError> { let func_type = self.function.get_type(); let results = self.state.popn_save_extra(wasm_fn_type.results().len())?; let is_32 = |value: &BasicValueEnum| { (value.is_int_value() && value.into_int_value().get_type() == self.intrinsics.i32_ty) || (value.is_float_value() && value.into_float_value().get_type() == self.intrinsics.f32_ty) }; let is_64 = |value: &BasicValueEnum| { (value.is_int_value() && value.into_int_value().get_type() == self.intrinsics.i64_ty) || (value.is_float_value() && value.into_float_value().get_type() == self.intrinsics.f64_ty) }; let is_f32 = |value: &BasicValueEnum| { value.is_float_value() && value.into_float_value().get_type() == self.intrinsics.f32_ty }; let pack_i32s = |low: IntValue<'ctx>, high: IntValue<'ctx>| { assert!(low.get_type() == self.intrinsics.i32_ty); assert!(high.get_type() == self.intrinsics.i32_ty); let low = self .builder .build_int_z_extend(low, self.intrinsics.i64_ty, ""); let high = self .builder .build_int_z_extend(high, self.intrinsics.i64_ty, ""); let high = self.builder.build_left_shift( high, self.intrinsics.i64_ty.const_int(32, false), "", ); self.builder.build_or(low, high, "") }; let pack_f32s = |first: FloatValue<'ctx>, second: FloatValue<'ctx>| -> VectorValue<'ctx> { assert!(first.get_type() == self.intrinsics.f32_ty); assert!(second.get_type() == self.intrinsics.f32_ty); let vec_ty = self.intrinsics.f32_ty.vec_type(2); let vec = self.builder.build_insert_element( vec_ty.get_undef(), first, self.intrinsics.i32_zero, "", ); let vec = self.builder.build_insert_element( vec, second, self.intrinsics.i32_ty.const_int(1, false), "", ); vec }; let build_struct = |ty: StructType<'ctx>, values: &[BasicValueEnum<'ctx>]| { let mut struct_value = ty.get_undef(); for (i, v) in values.iter().enumerate() { struct_value = self .builder .build_insert_value(struct_value, *v, i as u32, "") .unwrap() .into_struct_value(); } struct_value }; match results.as_slice() { [] => { self.builder.build_return(None); } [(one_value, one_value_info)] => { let one_value = self.apply_pending_canonicalization(*one_value, *one_value_info); self.builder.build_return(Some(&self.builder.build_bitcast( one_value.as_basic_value_enum(), type_to_llvm(&self.intrinsics, wasm_fn_type.results()[0]), "return", ))); } [(v1, v1i), (v2, v2i)] if is_f32(v1) && is_f32(v2) => { let v1 = self .apply_pending_canonicalization(*v1, *v1i) .into_float_value(); let v2 = self .apply_pending_canonicalization(*v2, *v2i) .into_float_value(); let ret = pack_f32s(v1, v2); self.builder.build_return(Some(&ret)); } [(v1, v1i), (v2, v2i)] if is_32(v1) && is_32(v2) => { let v1 = self.apply_pending_canonicalization(*v1, *v1i); let v2 = self.apply_pending_canonicalization(*v2, *v2i); let v1 = self .builder .build_bitcast(v1, self.intrinsics.i32_ty, "") .into_int_value(); let v2 = self .builder .build_bitcast(v2, self.intrinsics.i32_ty, "") .into_int_value(); let ret = pack_i32s(v1, v2); self.builder.build_return(Some(&ret)); } [(v1, v1i), (v2, v2i)] => { assert!(!(is_32(v1) && is_32(v2))); let v1 = self.apply_pending_canonicalization(*v1, *v1i); let v2 = self.apply_pending_canonicalization(*v2, *v2i); let struct_value = build_struct( func_type.get_return_type().unwrap().into_struct_type(), &[v1, v2], ); self.builder.build_return(Some(&struct_value)); } [(v1, v1i), (v2, v2i), (v3, v3i)] if is_f32(&v1) && is_f32(&v2) => { let v1 = self .apply_pending_canonicalization(*v1, *v1i) .into_float_value(); let v2 = self .apply_pending_canonicalization(*v2, *v2i) .into_float_value(); let v3 = self.apply_pending_canonicalization(*v3, *v3i); let struct_value = build_struct( func_type.get_return_type().unwrap().into_struct_type(), &[pack_f32s(v1, v2).as_basic_value_enum(), v3], ); self.builder.build_return(Some(&struct_value)); } [(v1, v1i), (v2, v2i), (v3, v3i)] if is_32(&v1) && is_32(&v2) => { let v1 = self.apply_pending_canonicalization(*v1, *v1i); let v2 = self.apply_pending_canonicalization(*v2, *v2i); let v3 = self.apply_pending_canonicalization(*v3, *v3i); let v1 = self .builder .build_bitcast(v1, self.intrinsics.i32_ty, "") .into_int_value(); let v2 = self .builder .build_bitcast(v2, self.intrinsics.i32_ty, "") .into_int_value(); let struct_value = build_struct( func_type.get_return_type().unwrap().into_struct_type(), &[pack_i32s(v1, v2).as_basic_value_enum(), v3], ); self.builder.build_return(Some(&struct_value)); } [(v1, v1i), (v2, v2i), (v3, v3i)] if is_64(&v1) && is_f32(&v2) && is_f32(&v3) => { let v1 = self.apply_pending_canonicalization(*v1, *v1i); let v2 = self .apply_pending_canonicalization(*v2, *v2i) .into_float_value(); let v3 = self .apply_pending_canonicalization(*v3, *v3i) .into_float_value(); let struct_value = build_struct( func_type.get_return_type().unwrap().into_struct_type(), &[v1, pack_f32s(v2, v3).as_basic_value_enum()], ); self.builder.build_return(Some(&struct_value)); } [(v1, v1i), (v2, v2i), (v3, v3i)] if is_64(&v1) && is_32(&v2) && is_32(&v3) => { let v1 = self.apply_pending_canonicalization(*v1, *v1i); let v2 = self.apply_pending_canonicalization(*v2, *v2i); let v3 = self.apply_pending_canonicalization(*v3, *v3i); let v2 = self .builder .build_bitcast(v2, self.intrinsics.i32_ty, "") .into_int_value(); let v3 = self .builder .build_bitcast(v3, self.intrinsics.i32_ty, "") .into_int_value(); let struct_value = build_struct( func_type.get_return_type().unwrap().into_struct_type(), &[v1, pack_i32s(v2, v3).as_basic_value_enum()], ); self.builder.build_return(Some(&struct_value)); } [(v1, v1i), (v2, v2i), (v3, v3i), (v4, v4i)] if is_32(v1) && is_32(v2) && is_32(v3) && is_32(v4) => { let v1 = self.apply_pending_canonicalization(*v1, *v1i); let v2 = self.apply_pending_canonicalization(*v2, *v2i); let v3 = self.apply_pending_canonicalization(*v3, *v3i); let v4 = self.apply_pending_canonicalization(*v4, *v4i); let v1v2_pack = if is_f32(&v1) && is_f32(&v2) { pack_f32s(v1.into_float_value(), v2.into_float_value()).into() } else { let v1 = self .builder .build_bitcast(v1, self.intrinsics.i32_ty, "") .into_int_value(); let v2 = self .builder .build_bitcast(v2, self.intrinsics.i32_ty, "") .into_int_value(); pack_i32s(v1, v2).into() }; let v3v4_pack = if is_f32(&v3) && is_f32(&v4) { pack_f32s(v3.into_float_value(), v4.into_float_value()).into() } else { let v3 = self .builder .build_bitcast(v3, self.intrinsics.i32_ty, "") .into_int_value(); let v4 = self .builder .build_bitcast(v4, self.intrinsics.i32_ty, "") .into_int_value(); pack_i32s(v3, v4).into() }; let struct_value = build_struct( func_type.get_return_type().unwrap().into_struct_type(), &[v1v2_pack, v3v4_pack], ); self.builder.build_return(Some(&struct_value)); } results @ _ => { let sret = self .function .get_first_param() .unwrap() .into_pointer_value(); let mut struct_value = sret .get_type() .get_element_type() .into_struct_type() .get_undef(); let mut idx = 0; for (value, info) in results { let one_value = self.apply_pending_canonicalization(*value, *info); let one_value = self.builder.build_bitcast( one_value, type_to_llvm(&self.intrinsics, wasm_fn_type.results()[idx]), "", ); struct_value = self .builder .build_insert_value(struct_value, one_value, idx as u32, "") .unwrap() .into_struct_value(); idx = idx + 1; } self.builder.build_store(sret, struct_value); self.builder.build_return(None); } } Ok(()) } } /* fn emit_stack_map<'ctx>( intrinsics: &Intrinsics<'ctx>, builder: &Builder<'ctx>, local_function_id: usize, target: &mut StackmapRegistry, kind: StackmapEntryKind, locals: &[PointerValue], state: &State<'ctx>, _ctx: &mut CtxType<'ctx>, opcode_offset: usize, ) { let stackmap_id = target.entries.len(); let mut params = Vec::with_capacity(2 + locals.len() + state.stack.len()); params.push( intrinsics .i64_ty .const_int(stackmap_id as u64, false) .as_basic_value_enum(), ); params.push(intrinsics.i32_ty.const_int(0, false).as_basic_value_enum()); let locals: Vec<_> = locals.iter().map(|x| x.as_basic_value_enum()).collect(); let mut value_semantics: Vec = Vec::with_capacity(locals.len() + state.stack.len()); params.extend_from_slice(&locals); value_semantics.extend((0..locals.len()).map(ValueSemantic::WasmLocal)); params.extend(state.stack.iter().map(|x| x.0)); value_semantics.extend((0..state.stack.len()).map(ValueSemantic::WasmStack)); // FIXME: Information needed for Abstract -> Runtime state transform is not fully preserved // to accelerate compilation and reduce memory usage. Check this again when we try to support // "full" LLVM OSR. assert_eq!(params.len(), value_semantics.len() + 2); builder.build_call(intrinsics.experimental_stackmap, ¶ms, ""); target.entries.push(StackmapEntry { kind, local_function_id, local_count: locals.len(), stack_count: state.stack.len(), opcode_offset, value_semantics, is_start: true, }); } fn finalize_opcode_stack_map<'ctx>( intrinsics: &Intrinsics<'ctx>, builder: &Builder<'ctx>, local_function_id: usize, target: &mut StackmapRegistry, kind: StackmapEntryKind, opcode_offset: usize, ) { let stackmap_id = target.entries.len(); builder.build_call( intrinsics.experimental_stackmap, &[ intrinsics .i64_ty .const_int(stackmap_id as u64, false) .as_basic_value_enum(), intrinsics.i32_ty.const_int(0, false).as_basic_value_enum(), ], "opcode_stack_map_end", ); target.entries.push(StackmapEntry { kind, local_function_id, local_count: 0, stack_count: 0, opcode_offset, value_semantics: vec![], is_start: false, }); } */ pub struct LLVMFunctionCodeGenerator<'ctx, 'a> { context: &'ctx Context, builder: Builder<'ctx>, intrinsics: &'a Intrinsics<'ctx>, state: State<'ctx>, function: FunctionValue<'ctx>, locals: Vec>, // Contains params and locals ctx: CtxType<'ctx, 'a>, unreachable_depth: usize, memory_plans: &'a PrimaryMap, _table_plans: &'a PrimaryMap, // This is support for stackmaps: /* stackmaps: Rc>, index: usize, opcode_offset: usize, track_state: bool, */ module: &'a Module<'ctx>, wasm_module: &'a ModuleInfo, func_names: &'a SecondaryMap, } impl<'ctx, 'a> LLVMFunctionCodeGenerator<'ctx, 'a> { fn translate_operator(&mut self, op: Operator, _source_loc: u32) -> Result<(), CompileError> { // TODO: remove this vmctx by moving everything into CtxType. Values // computed off vmctx usually benefit from caching. let vmctx = &self.ctx.basic().into_pointer_value(); //let opcode_offset: Option = None; if !self.state.reachable { match op { Operator::Block { ty: _ } | Operator::Loop { ty: _ } | Operator::If { ty: _ } => { self.unreachable_depth += 1; return Ok(()); } Operator::Else => { if self.unreachable_depth != 0 { return Ok(()); } } Operator::End => { if self.unreachable_depth != 0 { self.unreachable_depth -= 1; return Ok(()); } } _ => { return Ok(()); } } } match op { /*************************** * Control Flow instructions. * https://github.com/sunfishcode/wasm-reference-manual/blob/master/WebAssembly.md#control-flow-instructions ***************************/ Operator::Block { ty } => { let current_block = self .builder .get_insert_block() .ok_or_else(|| CompileError::Codegen("not currently in a block".to_string()))?; let end_block = self.context.append_basic_block(self.function, "end"); self.builder.position_at_end(end_block); let phis = blocktype_to_types(ty, self.wasm_module) .iter() .map(|&wasm_ty| type_to_llvm(self.intrinsics, wasm_ty)) .map(|ty| self.builder.build_phi(ty, "")) .collect(); self.state.push_block(end_block, phis); self.builder.position_at_end(current_block); } Operator::Loop { ty } => { let loop_body = self.context.append_basic_block(self.function, "loop_body"); let loop_next = self.context.append_basic_block(self.function, "loop_outer"); let pre_loop_block = self.builder.get_insert_block().unwrap(); self.builder.build_unconditional_branch(loop_body); self.builder.position_at_end(loop_next); let phis = blocktype_to_types(ty, self.wasm_module) .iter() .map(|&wasm_ty| type_to_llvm(self.intrinsics, wasm_ty)) .map(|ty| self.builder.build_phi(ty, "")) .collect(); self.builder.position_at_end(loop_body); let loop_phis: SmallVec<[PhiValue<'ctx>; 1]> = blocktype_to_param_types(ty, self.wasm_module) .iter() .map(|&wasm_ty| type_to_llvm(self.intrinsics, wasm_ty)) .map(|ty| self.builder.build_phi(ty, "")) .collect(); for phi in loop_phis.iter().rev() { let (value, info) = self.state.pop1_extra()?; let value = self.apply_pending_canonicalization(value, info); phi.add_incoming(&[(&value, pre_loop_block)]); } for phi in &loop_phis { self.state.push1(phi.as_basic_value()); } /* if self.track_state { if let Some(offset) = opcode_offset { let mut stackmaps = self.stackmaps.borrow_mut(); emit_stack_map( self.intrinsics, self.builder, self.index, &mut *stackmaps, StackmapEntryKind::Loop, &self.self.locals, state, ctx, offset, ); let signal_mem = ctx.signal_mem(); let iv = self.builder .build_store(signal_mem, self.context.i8_type().const_int(0 as u64, false)); // Any 'store' can be made volatile. iv.set_volatile(true).unwrap(); finalize_opcode_stack_map( self.intrinsics, self.builder, self.index, &mut *stackmaps, StackmapEntryKind::Loop, offset, ); } } */ self.state.push_loop(loop_body, loop_next, loop_phis, phis); } Operator::Br { relative_depth } => { let frame = self.state.frame_at_depth(relative_depth)?; let current_block = self .builder .get_insert_block() .ok_or_else(|| CompileError::Codegen("not currently in a block".to_string()))?; let phis = if frame.is_loop() { frame.loop_body_phis() } else { frame.phis() }; let len = phis.len(); let values = self.state.peekn_extra(len)?; let values = values .iter() .map(|(v, info)| self.apply_pending_canonicalization(*v, *info)); // For each result of the block we're branching to, // pop a value off the value stack and load it into // the corresponding phi. for (phi, value) in phis.iter().zip(values) { phi.add_incoming(&[(&value, current_block)]); } self.builder.build_unconditional_branch(*frame.br_dest()); self.state.popn(len)?; self.state.reachable = false; } Operator::BrIf { relative_depth } => { let cond = self.state.pop1()?; let frame = self.state.frame_at_depth(relative_depth)?; let current_block = self .builder .get_insert_block() .ok_or_else(|| CompileError::Codegen("not currently in a block".to_string()))?; let phis = if frame.is_loop() { frame.loop_body_phis() } else { frame.phis() }; let param_stack = self.state.peekn_extra(phis.len())?; let param_stack = param_stack .iter() .map(|(v, info)| self.apply_pending_canonicalization(*v, *info)); for (phi, value) in phis.iter().zip(param_stack) { phi.add_incoming(&[(&value, current_block)]); } let else_block = self.context.append_basic_block(self.function, "else"); let cond_value = self.builder.build_int_compare( IntPredicate::NE, cond.into_int_value(), self.intrinsics.i32_zero, "", ); self.builder .build_conditional_branch(cond_value, *frame.br_dest(), else_block); self.builder.position_at_end(else_block); } Operator::BrTable { ref table } => { let current_block = self .builder .get_insert_block() .ok_or_else(|| CompileError::Codegen("not currently in a block".to_string()))?; let (label_depths, default_depth) = table.read_table().map_err(to_wasm_error)?; let index = self.state.pop1()?; let default_frame = self.state.frame_at_depth(default_depth)?; let phis = if default_frame.is_loop() { default_frame.loop_body_phis() } else { default_frame.phis() }; let args = self.state.peekn(phis.len())?; for (phi, value) in phis.iter().zip(args.iter()) { phi.add_incoming(&[(value, current_block)]); } let cases: Vec<_> = label_depths .iter() .enumerate() .map(|(case_index, &depth)| { let frame_result: Result<&ControlFrame, CompileError> = self.state.frame_at_depth(depth); let frame = match frame_result { Ok(v) => v, Err(e) => return Err(e), }; let case_index_literal = self.context.i32_type().const_int(case_index as u64, false); for (phi, value) in frame.phis().iter().zip(args.iter()) { phi.add_incoming(&[(value, current_block)]); } Ok((case_index_literal, *frame.br_dest())) }) .collect::>()?; self.builder.build_switch( index.into_int_value(), *default_frame.br_dest(), &cases[..], ); let args_len = args.len(); self.state.popn(args_len)?; self.state.reachable = false; } Operator::If { ty } => { let current_block = self .builder .get_insert_block() .ok_or_else(|| CompileError::Codegen("not currently in a block".to_string()))?; let if_then_block = self.context.append_basic_block(self.function, "if_then"); let if_else_block = self.context.append_basic_block(self.function, "if_else"); let end_block = self.context.append_basic_block(self.function, "if_end"); let end_phis = { self.builder.position_at_end(end_block); let phis = blocktype_to_types(ty, self.wasm_module) .iter() .map(|&wasm_ty| type_to_llvm(self.intrinsics, wasm_ty)) .map(|ty| self.builder.build_phi(ty, "")) .collect(); self.builder.position_at_end(current_block); phis }; let cond = self.state.pop1()?; let cond_value = self.builder.build_int_compare( IntPredicate::NE, cond.into_int_value(), self.intrinsics.i32_zero, "", ); self.builder .build_conditional_branch(cond_value, if_then_block, if_else_block); self.builder.position_at_end(if_else_block); let else_phis: SmallVec<[PhiValue<'ctx>; 1]> = blocktype_to_param_types(ty, self.wasm_module) .iter() .map(|&wasm_ty| type_to_llvm(self.intrinsics, wasm_ty)) .map(|ty| self.builder.build_phi(ty, "")) .collect(); self.builder.position_at_end(if_then_block); let then_phis: SmallVec<[PhiValue<'ctx>; 1]> = blocktype_to_param_types(ty, self.wasm_module) .iter() .map(|&wasm_ty| type_to_llvm(self.intrinsics, wasm_ty)) .map(|ty| self.builder.build_phi(ty, "")) .collect(); for (else_phi, then_phi) in else_phis.iter().rev().zip(then_phis.iter().rev()) { let (value, info) = self.state.pop1_extra()?; let value = self.apply_pending_canonicalization(value, info); else_phi.add_incoming(&[(&value, current_block)]); then_phi.add_incoming(&[(&value, current_block)]); } for phi in then_phis.iter() { self.state.push1(phi.as_basic_value()); } self.state.push_if( if_then_block, if_else_block, end_block, then_phis, else_phis, end_phis, ); } Operator::Else => { if self.state.reachable { let frame = self.state.frame_at_depth(0)?; let current_block = self.builder.get_insert_block().ok_or_else(|| { CompileError::Codegen("not currently in a block".to_string()) })?; for phi in frame.phis().to_vec().iter().rev() { let (value, info) = self.state.pop1_extra()?; let value = self.apply_pending_canonicalization(value, info); phi.add_incoming(&[(&value, current_block)]) } let frame = self.state.frame_at_depth(0)?; self.builder.build_unconditional_branch(*frame.code_after()); } let (if_else_block, if_else_state) = if let ControlFrame::IfElse { if_else, if_else_state, .. } = self.state.frame_at_depth_mut(0)? { (if_else, if_else_state) } else { unreachable!() }; *if_else_state = IfElseState::Else; self.builder.position_at_end(*if_else_block); self.state.reachable = true; if let ControlFrame::IfElse { else_phis, .. } = self.state.frame_at_depth(0)? { // Push our own 'else' phi nodes to the stack. for phi in else_phis.clone().iter() { self.state.push1(phi.as_basic_value()); } }; } Operator::End => { let frame = self.state.pop_frame()?; let current_block = self .builder .get_insert_block() .ok_or_else(|| CompileError::Codegen("not currently in a block".to_string()))?; if self.state.reachable { for phi in frame.phis().iter().rev() { let (value, info) = self.state.pop1_extra()?; let value = self.apply_pending_canonicalization(value, info); phi.add_incoming(&[(&value, current_block)]); } self.builder.build_unconditional_branch(*frame.code_after()); } if let ControlFrame::IfElse { if_else, next, if_else_state, else_phis, .. } = &frame { if let IfElseState::If = if_else_state { for (phi, else_phi) in frame.phis().iter().zip(else_phis.iter()) { phi.add_incoming(&[(&else_phi.as_basic_value(), *if_else)]); } self.builder.position_at_end(*if_else); self.builder.build_unconditional_branch(*next); } } self.builder.position_at_end(*frame.code_after()); self.state.reset_stack(&frame); self.state.reachable = true; // Push each phi value to the value stack. for phi in frame.phis() { if phi.count_incoming() != 0 { self.state.push1(phi.as_basic_value()); } else { let basic_ty = phi.as_basic_value().get_type(); let placeholder_value = match basic_ty { BasicTypeEnum::IntType(int_ty) => { int_ty.const_int(0, false).as_basic_value_enum() } BasicTypeEnum::FloatType(float_ty) => { float_ty.const_float(0.0).as_basic_value_enum() } _ => { return Err(CompileError::Codegen( "Operator::End phi type unimplemented".to_string(), )); } }; self.state.push1(placeholder_value); phi.as_instruction().erase_from_basic_block(); } } } Operator::Return => { let current_block = self .builder .get_insert_block() .ok_or_else(|| CompileError::Codegen("not currently in a block".to_string()))?; let frame = self.state.outermost_frame()?; for phi in frame.phis().to_vec().iter().rev() { let (arg, info) = self.state.pop1_extra()?; let arg = self.apply_pending_canonicalization(arg, info); phi.add_incoming(&[(&arg, current_block)]); } let frame = self.state.outermost_frame()?; self.builder.build_unconditional_branch(*frame.br_dest()); self.state.reachable = false; } Operator::Unreachable => { // Emit an unreachable instruction. // If llvm cannot prove that this is never reached, // it will emit a `ud2` instruction on x86_64 arches. // Comment out this `if` block to allow spectests to pass. // TODO: fix this /* if let Some(offset) = opcode_offset { if self.track_state { let mut stackmaps = self.stackmaps.borrow_mut(); emit_stack_map( self.intrinsics, self.builder, self.index, &mut *stackmaps, StackmapEntryKind::Trappable, &self.self.locals, state, ctx, offset, ); self.builder.build_call(self.intrinsics.trap, &[], "trap"); finalize_opcode_stack_map( self.intrinsics, self.builder, self.index, &mut *stackmaps, StackmapEntryKind::Trappable, offset, ); } } */ self.builder.build_call( self.intrinsics.throw_trap, &[self.intrinsics.trap_unreachable], "throw", ); self.builder.build_unreachable(); self.state.reachable = false; } /*************************** * Basic instructions. * https://github.com/sunfishcode/wasm-reference-manual/blob/master/WebAssembly.md#basic-instructions ***************************/ Operator::Nop => { // Do nothing. } Operator::Drop => { self.state.pop1()?; } // Generate const values. Operator::I32Const { value } => { let i = self.intrinsics.i32_ty.const_int(value as u64, false); let info = if is_f32_arithmetic(value as u32) { ExtraInfo::arithmetic_f32() } else { Default::default() }; self.state.push1_extra(i, info); } Operator::I64Const { value } => { let i = self.intrinsics.i64_ty.const_int(value as u64, false); let info = if is_f64_arithmetic(value as u64) { ExtraInfo::arithmetic_f64() } else { Default::default() }; self.state.push1_extra(i, info); } Operator::F32Const { value } => { let bits = self.intrinsics.i32_ty.const_int(value.bits() as u64, false); let info = if is_f32_arithmetic(value.bits()) { ExtraInfo::arithmetic_f32() } else { Default::default() }; let f = self .builder .build_bitcast(bits, self.intrinsics.f32_ty, "f"); self.state.push1_extra(f, info); } Operator::F64Const { value } => { let bits = self.intrinsics.i64_ty.const_int(value.bits(), false); let info = if is_f64_arithmetic(value.bits()) { ExtraInfo::arithmetic_f64() } else { Default::default() }; let f = self .builder .build_bitcast(bits, self.intrinsics.f64_ty, "f"); self.state.push1_extra(f, info); } Operator::V128Const { value } => { let mut hi: [u8; 8] = Default::default(); let mut lo: [u8; 8] = Default::default(); hi.copy_from_slice(&value.bytes()[0..8]); lo.copy_from_slice(&value.bytes()[8..16]); let packed = [u64::from_le_bytes(hi), u64::from_le_bytes(lo)]; let i = self .intrinsics .i128_ty .const_int_arbitrary_precision(&packed); let mut quad1: [u8; 4] = Default::default(); let mut quad2: [u8; 4] = Default::default(); let mut quad3: [u8; 4] = Default::default(); let mut quad4: [u8; 4] = Default::default(); quad1.copy_from_slice(&value.bytes()[0..4]); quad2.copy_from_slice(&value.bytes()[4..8]); quad3.copy_from_slice(&value.bytes()[8..12]); quad4.copy_from_slice(&value.bytes()[12..16]); let mut info: ExtraInfo = Default::default(); if is_f32_arithmetic(u32::from_le_bytes(quad1)) && is_f32_arithmetic(u32::from_le_bytes(quad2)) && is_f32_arithmetic(u32::from_le_bytes(quad3)) && is_f32_arithmetic(u32::from_le_bytes(quad4)) { info |= ExtraInfo::arithmetic_f32(); } if is_f64_arithmetic(packed[0]) && is_f64_arithmetic(packed[1]) { info |= ExtraInfo::arithmetic_f64(); } self.state.push1_extra(i, info); } Operator::I8x16Splat => { let (v, i) = self.state.pop1_extra()?; let v = v.into_int_value(); let v = self .builder .build_int_truncate(v, self.intrinsics.i8_ty, ""); let res = self.splat_vector(v.as_basic_value_enum(), self.intrinsics.i8x16_ty); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1_extra(res, i); } Operator::I16x8Splat => { let (v, i) = self.state.pop1_extra()?; let v = v.into_int_value(); let v = self .builder .build_int_truncate(v, self.intrinsics.i16_ty, ""); let res = self.splat_vector(v.as_basic_value_enum(), self.intrinsics.i16x8_ty); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1_extra(res, i); } Operator::I32x4Splat => { let (v, i) = self.state.pop1_extra()?; let res = self.splat_vector(v, self.intrinsics.i32x4_ty); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1_extra(res, i); } Operator::I64x2Splat => { let (v, i) = self.state.pop1_extra()?; let res = self.splat_vector(v, self.intrinsics.i64x2_ty); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1_extra(res, i); } Operator::F32x4Splat => { let (v, i) = self.state.pop1_extra()?; let res = self.splat_vector(v, self.intrinsics.f32x4_ty); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); // The spec is unclear, we interpret splat as preserving NaN // payload bits. self.state.push1_extra(res, i); } Operator::F64x2Splat => { let (v, i) = self.state.pop1_extra()?; let res = self.splat_vector(v, self.intrinsics.f64x2_ty); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); // The spec is unclear, we interpret splat as preserving NaN // payload bits. self.state.push1_extra(res, i); } // Operate on self.locals. Operator::LocalGet { local_index } => { let pointer_value = self.locals[local_index as usize]; let v = self.builder.build_load(pointer_value, ""); tbaa_label( &self.module, self.intrinsics, format!("local {}", local_index), v.as_instruction_value().unwrap(), ); self.state.push1(v); } Operator::LocalSet { local_index } => { let pointer_value = self.locals[local_index as usize]; let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i); let store = self.builder.build_store(pointer_value, v); tbaa_label( &self.module, self.intrinsics, format!("local {}", local_index), store, ); } Operator::LocalTee { local_index } => { let pointer_value = self.locals[local_index as usize]; let (v, i) = self.state.peek1_extra()?; let v = self.apply_pending_canonicalization(v, i); let store = self.builder.build_store(pointer_value, v); tbaa_label( &self.module, self.intrinsics, format!("local {}", local_index), store, ); } Operator::GlobalGet { global_index } => { let global_index = GlobalIndex::from_u32(global_index); match self.ctx.global(global_index, self.intrinsics, self.module) { GlobalCache::Const { value } => { self.state.push1(value); } GlobalCache::Mut { ptr_to_value } => { let value = self.builder.build_load(ptr_to_value, ""); tbaa_label( self.module, self.intrinsics, format!("global {}", global_index.as_u32()), value.as_instruction_value().unwrap(), ); self.state.push1(value); } } } Operator::GlobalSet { global_index } => { let global_index = GlobalIndex::from_u32(global_index); match self.ctx.global(global_index, self.intrinsics, self.module) { GlobalCache::Const { value: _ } => { return Err(CompileError::Codegen(format!( "global.set on immutable global index {}", global_index.as_u32() ))) } GlobalCache::Mut { ptr_to_value } => { let (value, info) = self.state.pop1_extra()?; let value = self.apply_pending_canonicalization(value, info); let store = self.builder.build_store(ptr_to_value, value); tbaa_label( self.module, self.intrinsics, format!("global {}", global_index.as_u32()), store, ); } } } Operator::Select => { let ((v1, i1), (v2, i2), (cond, _)) = self.state.pop3_extra()?; // We don't bother canonicalizing 'cond' here because we only // compare it to zero, and that's invariant under // canonicalization. // If the pending bits of v1 and v2 are the same, we can pass // them along to the result. Otherwise, apply pending // canonicalizations now. let (v1, i1, v2, i2) = if i1.has_pending_f32_nan() != i2.has_pending_f32_nan() || i1.has_pending_f64_nan() != i2.has_pending_f64_nan() { ( self.apply_pending_canonicalization(v1, i1), i1.strip_pending(), self.apply_pending_canonicalization(v2, i2), i2.strip_pending(), ) } else { (v1, i1, v2, i2) }; let cond_value = self.builder.build_int_compare( IntPredicate::NE, cond.into_int_value(), self.intrinsics.i32_zero, "", ); let res = self.builder.build_select(cond_value, v1, v2, ""); let info = { let mut info = i1.strip_pending() & i2.strip_pending(); if i1.has_pending_f32_nan() { debug_assert!(i2.has_pending_f32_nan()); info |= ExtraInfo::pending_f32_nan(); } if i1.has_pending_f64_nan() { debug_assert!(i2.has_pending_f64_nan()); info |= ExtraInfo::pending_f64_nan(); } info }; self.state.push1_extra(res, info); } Operator::Call { function_index } => { let func_index = FunctionIndex::from_u32(function_index); let sigindex = &self.wasm_module.functions[func_index]; let func_type = &self.wasm_module.signatures[*sigindex]; let func_name = &self.func_names[func_index]; let FunctionCache { func, vmctx: callee_vmctx, attrs, } = self.ctx.func( func_index, self.intrinsics, self.module, self.context, func_name, func_type, ); let func = *func; let callee_vmctx = *callee_vmctx; let attrs = attrs.clone(); /* let func_ptr = self.llvm.functions.borrow_mut()[&func_index]; (params, func_ptr.as_global_value().as_pointer_value()) */ let params = self.state.popn_save_extra(func_type.params().len())?; // Apply pending canonicalizations. let params = params .iter() .zip(func_type.params().iter()) .map(|((v, info), wasm_ty)| match wasm_ty { Type::F32 => self.builder.build_bitcast( self.apply_pending_canonicalization(*v, *info), self.intrinsics.f32_ty, "", ), Type::F64 => self.builder.build_bitcast( self.apply_pending_canonicalization(*v, *info), self.intrinsics.f64_ty, "", ), Type::V128 => self.apply_pending_canonicalization(*v, *info), _ => *v, }); let params = abi::args_to_call( // TODO: should be an alloca_builder. &self.builder, func_type, callee_vmctx.into_pointer_value(), &func.get_type().get_element_type().into_function_type(), params.collect::>().as_slice(), ); /* if self.track_state { if let Some(offset) = opcode_offset { let mut stackmaps = self.stackmaps.borrow_mut(); emit_stack_map( &info, self.intrinsics, self.builder, self.index, &mut *stackmaps, StackmapEntryKind::Call, &self.locals, state, ctx, offset, ) } } */ let call_site = self.builder.build_call(func, ¶ms, ""); for (attr, attr_loc) in attrs { call_site.add_attribute(attr_loc, attr); } /* if self.track_state { if let Some(offset) = opcode_offset { let mut stackmaps = self.stackmaps.borrow_mut(); finalize_opcode_stack_map( self.intrinsics, self.builder, self.index, &mut *stackmaps, StackmapEntryKind::Call, offset, ) } } */ abi::rets_from_call(&self.builder, &self.intrinsics, call_site, func_type) .iter() .for_each(|ret| self.state.push1(*ret)); } Operator::CallIndirect { index, table_index } => { let sigindex = SignatureIndex::from_u32(index); let func_type = &self.wasm_module.signatures[sigindex]; let expected_dynamic_sigindex = self.ctx .dynamic_sigindex(sigindex, self.intrinsics, self.module); let (table_base, table_bound) = self.ctx.table( TableIndex::from_u32(table_index), self.intrinsics, self.module, ); let func_index = self.state.pop1()?.into_int_value(); // We assume the table has the `anyfunc` element type. let casted_table_base = self.builder.build_pointer_cast( table_base, self.intrinsics.anyfunc_ty.ptr_type(AddressSpace::Generic), "casted_table_base", ); let anyfunc_struct_ptr = unsafe { self.builder.build_in_bounds_gep( casted_table_base, &[func_index], "anyfunc_struct_ptr", ) }; // Load things from the anyfunc data structure. let (func_ptr, found_dynamic_sigindex, ctx_ptr) = ( self.builder .build_load( self.builder .build_struct_gep(anyfunc_struct_ptr, 0, "func_ptr_ptr") .unwrap(), "func_ptr", ) .into_pointer_value(), self.builder .build_load( self.builder .build_struct_gep(anyfunc_struct_ptr, 1, "sigindex_ptr") .unwrap(), "sigindex", ) .into_int_value(), self.builder.build_load( self.builder .build_struct_gep(anyfunc_struct_ptr, 2, "ctx_ptr_ptr") .unwrap(), "ctx_ptr", ), ); let truncated_table_bounds = self.builder.build_int_truncate( table_bound, self.intrinsics.i32_ty, "truncated_table_bounds", ); // First, check if the index is outside of the table bounds. let index_in_bounds = self.builder.build_int_compare( IntPredicate::ULT, func_index, truncated_table_bounds, "index_in_bounds", ); let index_in_bounds = self .builder .build_call( self.intrinsics.expect_i1, &[ index_in_bounds.as_basic_value_enum(), self.intrinsics .i1_ty .const_int(1, false) .as_basic_value_enum(), ], "index_in_bounds_expect", ) .try_as_basic_value() .left() .unwrap() .into_int_value(); let in_bounds_continue_block = self .context .append_basic_block(self.function, "in_bounds_continue_block"); let not_in_bounds_block = self .context .append_basic_block(self.function, "not_in_bounds_block"); self.builder.build_conditional_branch( index_in_bounds, in_bounds_continue_block, not_in_bounds_block, ); self.builder.position_at_end(not_in_bounds_block); self.builder.build_call( self.intrinsics.throw_trap, &[self.intrinsics.trap_table_access_oob], "throw", ); self.builder.build_unreachable(); self.builder.position_at_end(in_bounds_continue_block); // Next, check if the table element is initialized. let elem_initialized = self.builder.build_is_not_null(func_ptr, ""); // Next, check if the signature id is correct. let sigindices_equal = self.builder.build_int_compare( IntPredicate::EQ, expected_dynamic_sigindex, found_dynamic_sigindex, "sigindices_equal", ); let initialized_and_sigindices_match = self.builder .build_and(elem_initialized, sigindices_equal, ""); // Tell llvm that `expected_dynamic_sigindex` should equal `found_dynamic_sigindex`. let initialized_and_sigindices_match = self .builder .build_call( self.intrinsics.expect_i1, &[ initialized_and_sigindices_match.as_basic_value_enum(), self.intrinsics .i1_ty .const_int(1, false) .as_basic_value_enum(), ], "initialized_and_sigindices_match_expect", ) .try_as_basic_value() .left() .unwrap() .into_int_value(); let continue_block = self .context .append_basic_block(self.function, "continue_block"); let sigindices_notequal_block = self .context .append_basic_block(self.function, "sigindices_notequal_block"); self.builder.build_conditional_branch( initialized_and_sigindices_match, continue_block, sigindices_notequal_block, ); self.builder.position_at_end(sigindices_notequal_block); let trap_code = self.builder.build_select( elem_initialized, self.intrinsics.trap_call_indirect_sig, self.intrinsics.trap_call_indirect_null, "", ); self.builder .build_call(self.intrinsics.throw_trap, &[trap_code], "throw"); self.builder.build_unreachable(); self.builder.position_at_end(continue_block); let (llvm_func_type, llvm_func_attrs) = abi::func_type_to_llvm(&self.context, &self.intrinsics, func_type); let params = self.state.popn_save_extra(func_type.params().len())?; // Apply pending canonicalizations. let params = params .iter() .zip(func_type.params().iter()) .map(|((v, info), wasm_ty)| match wasm_ty { Type::F32 => self.builder.build_bitcast( self.apply_pending_canonicalization(*v, *info), self.intrinsics.f32_ty, "", ), Type::F64 => self.builder.build_bitcast( self.apply_pending_canonicalization(*v, *info), self.intrinsics.f64_ty, "", ), Type::V128 => self.apply_pending_canonicalization(*v, *info), _ => *v, }); let params = abi::args_to_call( // TODO: should be an alloca_builder. &self.builder, func_type, ctx_ptr.into_pointer_value(), &llvm_func_type, params.collect::>().as_slice(), ); let typed_func_ptr = self.builder.build_pointer_cast( func_ptr, llvm_func_type.ptr_type(AddressSpace::Generic), "typed_func_ptr", ); /* if self.track_state { if let Some(offset) = opcode_offset { let mut stackmaps = self.stackmaps.borrow_mut(); emit_stack_map( &info, self.intrinsics, self.builder, self.index, &mut *stackmaps, StackmapEntryKind::Call, &self.locals, state, ctx, offset, ) } } */ let call_site = self .builder .build_call(typed_func_ptr, ¶ms, "indirect_call"); for (attr, attr_loc) in llvm_func_attrs { call_site.add_attribute(attr_loc, attr); } /* if self.track_state { if let Some(offset) = opcode_offset { let mut stackmaps = self.stackmaps.borrow_mut(); finalize_opcode_stack_map( self.intrinsics, self.builder, self.index, &mut *stackmaps, StackmapEntryKind::Call, offset, ) } } */ abi::rets_from_call(&self.builder, &self.intrinsics, call_site, func_type) .iter() .for_each(|ret| self.state.push1(*ret)); } /*************************** * Integer Arithmetic instructions. * https://github.com/sunfishcode/wasm-reference-manual/blob/master/WebAssembly.md#integer-arithmetic-instructions ***************************/ Operator::I32Add | Operator::I64Add => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let (v1, v2) = (v1.into_int_value(), v2.into_int_value()); let res = self.builder.build_int_add(v1, v2, ""); self.state.push1(res); } Operator::I8x16Add => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i8x16(v1, i1); let (v2, _) = self.v128_into_i8x16(v2, i2); let res = self.builder.build_int_add(v1, v2, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I16x8Add => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i16x8(v1, i1); let (v2, _) = self.v128_into_i16x8(v2, i2); let res = self.builder.build_int_add(v1, v2, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32x4Add => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i32x4(v1, i1); let (v2, _) = self.v128_into_i32x4(v2, i2); let res = self.builder.build_int_add(v1, v2, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I64x2Add => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i64x2(v1, i1); let (v2, _) = self.v128_into_i64x2(v2, i2); let res = self.builder.build_int_add(v1, v2, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I8x16AddSaturateS => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i8x16(v1, i1); let (v2, _) = self.v128_into_i8x16(v2, i2); let res = self .builder .build_call( self.intrinsics.sadd_sat_i8x16, &[v1.as_basic_value_enum(), v2.as_basic_value_enum()], "", ) .try_as_basic_value() .left() .unwrap(); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I16x8AddSaturateS => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i16x8(v1, i1); let (v2, _) = self.v128_into_i16x8(v2, i2); let res = self .builder .build_call( self.intrinsics.sadd_sat_i16x8, &[v1.as_basic_value_enum(), v2.as_basic_value_enum()], "", ) .try_as_basic_value() .left() .unwrap(); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I8x16AddSaturateU => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i8x16(v1, i1); let (v2, _) = self.v128_into_i8x16(v2, i2); let res = self .builder .build_call( self.intrinsics.uadd_sat_i8x16, &[v1.as_basic_value_enum(), v2.as_basic_value_enum()], "", ) .try_as_basic_value() .left() .unwrap(); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I16x8AddSaturateU => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i16x8(v1, i1); let (v2, _) = self.v128_into_i16x8(v2, i2); let res = self .builder .build_call( self.intrinsics.uadd_sat_i16x8, &[v1.as_basic_value_enum(), v2.as_basic_value_enum()], "", ) .try_as_basic_value() .left() .unwrap(); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32Sub | Operator::I64Sub => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let (v1, v2) = (v1.into_int_value(), v2.into_int_value()); let res = self.builder.build_int_sub(v1, v2, ""); self.state.push1(res); } Operator::I8x16Sub => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i8x16(v1, i1); let (v2, _) = self.v128_into_i8x16(v2, i2); let res = self.builder.build_int_sub(v1, v2, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I16x8Sub => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i16x8(v1, i1); let (v2, _) = self.v128_into_i16x8(v2, i2); let res = self.builder.build_int_sub(v1, v2, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32x4Sub => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i32x4(v1, i1); let (v2, _) = self.v128_into_i32x4(v2, i2); let res = self.builder.build_int_sub(v1, v2, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I64x2Sub => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i64x2(v1, i1); let (v2, _) = self.v128_into_i64x2(v2, i2); let res = self.builder.build_int_sub(v1, v2, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I8x16SubSaturateS => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i8x16(v1, i1); let (v2, _) = self.v128_into_i8x16(v2, i2); let res = self .builder .build_call( self.intrinsics.ssub_sat_i8x16, &[v1.as_basic_value_enum(), v2.as_basic_value_enum()], "", ) .try_as_basic_value() .left() .unwrap(); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I16x8SubSaturateS => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i16x8(v1, i1); let (v2, _) = self.v128_into_i16x8(v2, i2); let res = self .builder .build_call( self.intrinsics.ssub_sat_i16x8, &[v1.as_basic_value_enum(), v2.as_basic_value_enum()], "", ) .try_as_basic_value() .left() .unwrap(); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I8x16SubSaturateU => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i8x16(v1, i1); let (v2, _) = self.v128_into_i8x16(v2, i2); let res = self .builder .build_call( self.intrinsics.usub_sat_i8x16, &[v1.as_basic_value_enum(), v2.as_basic_value_enum()], "", ) .try_as_basic_value() .left() .unwrap(); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I16x8SubSaturateU => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i16x8(v1, i1); let (v2, _) = self.v128_into_i16x8(v2, i2); let res = self .builder .build_call( self.intrinsics.usub_sat_i16x8, &[v1.as_basic_value_enum(), v2.as_basic_value_enum()], "", ) .try_as_basic_value() .left() .unwrap(); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32Mul | Operator::I64Mul => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let (v1, v2) = (v1.into_int_value(), v2.into_int_value()); let res = self.builder.build_int_mul(v1, v2, ""); self.state.push1(res); } Operator::I8x16Mul => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i8x16(v1, i1); let (v2, _) = self.v128_into_i8x16(v2, i2); let res = self.builder.build_int_mul(v1, v2, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I16x8Mul => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i16x8(v1, i1); let (v2, _) = self.v128_into_i16x8(v2, i2); let res = self.builder.build_int_mul(v1, v2, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32x4Mul => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i32x4(v1, i1); let (v2, _) = self.v128_into_i32x4(v2, i2); let res = self.builder.build_int_mul(v1, v2, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32DivS | Operator::I64DivS => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let (v1, v2) = (v1.into_int_value(), v2.into_int_value()); self.trap_if_zero_or_overflow(v1, v2); let res = self.builder.build_int_signed_div(v1, v2, ""); self.state.push1(res); } Operator::I32DivU | Operator::I64DivU => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let (v1, v2) = (v1.into_int_value(), v2.into_int_value()); self.trap_if_zero(v2); let res = self.builder.build_int_unsigned_div(v1, v2, ""); self.state.push1(res); } Operator::I32RemS | Operator::I64RemS => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let (v1, v2) = (v1.into_int_value(), v2.into_int_value()); let int_type = v1.get_type(); let (min_value, neg_one_value) = if int_type == self.intrinsics.i32_ty { let min_value = int_type.const_int(i32::min_value() as u64, false); let neg_one_value = int_type.const_int(-1i32 as u32 as u64, false); (min_value, neg_one_value) } else if int_type == self.intrinsics.i64_ty { let min_value = int_type.const_int(i64::min_value() as u64, false); let neg_one_value = int_type.const_int(-1i64 as u64, false); (min_value, neg_one_value) } else { unreachable!() }; self.trap_if_zero(v2); // "Overflow also leads to undefined behavior; this is a rare // case, but can occur, for example, by taking the remainder of // a 32-bit division of -2147483648 by -1. (The remainder // doesn’t actually overflow, but this rule lets srem be // implemented using instructions that return both the result // of the division and the remainder.)" // -- https://llvm.org/docs/LangRef.html#srem-instruction // // In Wasm, the i32.rem_s i32.const -2147483648 i32.const -1 is // i32.const 0. We implement this by swapping out the left value // for 0 in this case. let will_overflow = self.builder.build_and( self.builder .build_int_compare(IntPredicate::EQ, v1, min_value, "left_is_min"), self.builder.build_int_compare( IntPredicate::EQ, v2, neg_one_value, "right_is_neg_one", ), "srem_will_overflow", ); let v1 = self .builder .build_select(will_overflow, int_type.const_zero(), v1, "") .into_int_value(); let res = self.builder.build_int_signed_rem(v1, v2, ""); self.state.push1(res); } Operator::I32RemU | Operator::I64RemU => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let (v1, v2) = (v1.into_int_value(), v2.into_int_value()); self.trap_if_zero(v2); let res = self.builder.build_int_unsigned_rem(v1, v2, ""); self.state.push1(res); } Operator::I32And | Operator::I64And | Operator::V128And => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let (v1, v2) = (v1.into_int_value(), v2.into_int_value()); let res = self.builder.build_and(v1, v2, ""); self.state.push1(res); } Operator::I32Or | Operator::I64Or | Operator::V128Or => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let (v1, v2) = (v1.into_int_value(), v2.into_int_value()); let res = self.builder.build_or(v1, v2, ""); self.state.push1(res); } Operator::I32Xor | Operator::I64Xor | Operator::V128Xor => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let (v1, v2) = (v1.into_int_value(), v2.into_int_value()); let res = self.builder.build_xor(v1, v2, ""); self.state.push1(res); } Operator::V128Bitselect => { let ((v1, i1), (v2, i2), (cond, cond_info)) = self.state.pop3_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let cond = self.apply_pending_canonicalization(cond, cond_info); let v1 = self .builder .build_bitcast(v1, self.intrinsics.i1x128_ty, "") .into_vector_value(); let v2 = self .builder .build_bitcast(v2, self.intrinsics.i1x128_ty, "") .into_vector_value(); let cond = self .builder .build_bitcast(cond, self.intrinsics.i1x128_ty, "") .into_vector_value(); let res = self.builder.build_select(cond, v1, v2, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32Shl | Operator::I64Shl => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let (v1, v2) = (v1.into_int_value(), v2.into_int_value()); // TODO: missing 'and' of v2? let res = self.builder.build_left_shift(v1, v2, ""); self.state.push1(res); } Operator::I8x16Shl => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i8x16(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let v2 = v2.into_int_value(); let v2 = self .builder .build_and(v2, self.intrinsics.i32_ty.const_int(7, false), ""); let v2 = self .builder .build_int_truncate(v2, self.intrinsics.i8_ty, ""); let v2 = self.splat_vector(v2.as_basic_value_enum(), self.intrinsics.i8x16_ty); let res = self.builder.build_left_shift(v1, v2, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I16x8Shl => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i16x8(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let v2 = v2.into_int_value(); let v2 = self.builder .build_and(v2, self.intrinsics.i32_ty.const_int(15, false), ""); let v2 = self .builder .build_int_truncate(v2, self.intrinsics.i16_ty, ""); let v2 = self.splat_vector(v2.as_basic_value_enum(), self.intrinsics.i16x8_ty); let res = self.builder.build_left_shift(v1, v2, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32x4Shl => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i32x4(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let v2 = v2.into_int_value(); let v2 = self.builder .build_and(v2, self.intrinsics.i32_ty.const_int(31, false), ""); let v2 = self.splat_vector(v2.as_basic_value_enum(), self.intrinsics.i32x4_ty); let res = self.builder.build_left_shift(v1, v2, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I64x2Shl => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i64x2(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let v2 = v2.into_int_value(); let v2 = self.builder .build_and(v2, self.intrinsics.i32_ty.const_int(63, false), ""); let v2 = self .builder .build_int_z_extend(v2, self.intrinsics.i64_ty, ""); let v2 = self.splat_vector(v2.as_basic_value_enum(), self.intrinsics.i64x2_ty); let res = self.builder.build_left_shift(v1, v2, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32ShrS | Operator::I64ShrS => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let (v1, v2) = (v1.into_int_value(), v2.into_int_value()); // TODO: check wasm spec, is this missing v2 mod LaneBits? let res = self.builder.build_right_shift(v1, v2, true, ""); self.state.push1(res); } Operator::I8x16ShrS => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i8x16(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let v2 = v2.into_int_value(); let v2 = self .builder .build_and(v2, self.intrinsics.i32_ty.const_int(7, false), ""); let v2 = self .builder .build_int_truncate(v2, self.intrinsics.i8_ty, ""); let v2 = self.splat_vector(v2.as_basic_value_enum(), self.intrinsics.i8x16_ty); let res = self.builder.build_right_shift(v1, v2, true, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I16x8ShrS => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i16x8(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let v2 = v2.into_int_value(); let v2 = self.builder .build_and(v2, self.intrinsics.i32_ty.const_int(15, false), ""); let v2 = self .builder .build_int_truncate(v2, self.intrinsics.i16_ty, ""); let v2 = self.splat_vector(v2.as_basic_value_enum(), self.intrinsics.i16x8_ty); let res = self.builder.build_right_shift(v1, v2, true, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32x4ShrS => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i32x4(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let v2 = v2.into_int_value(); let v2 = self.builder .build_and(v2, self.intrinsics.i32_ty.const_int(31, false), ""); let v2 = self.splat_vector(v2.as_basic_value_enum(), self.intrinsics.i32x4_ty); let res = self.builder.build_right_shift(v1, v2, true, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I64x2ShrS => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i64x2(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let v2 = v2.into_int_value(); let v2 = self.builder .build_and(v2, self.intrinsics.i32_ty.const_int(63, false), ""); let v2 = self .builder .build_int_z_extend(v2, self.intrinsics.i64_ty, ""); let v2 = self.splat_vector(v2.as_basic_value_enum(), self.intrinsics.i64x2_ty); let res = self.builder.build_right_shift(v1, v2, true, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32ShrU | Operator::I64ShrU => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let (v1, v2) = (v1.into_int_value(), v2.into_int_value()); let res = self.builder.build_right_shift(v1, v2, false, ""); self.state.push1(res); } Operator::I8x16ShrU => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i8x16(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let v2 = v2.into_int_value(); let v2 = self .builder .build_and(v2, self.intrinsics.i32_ty.const_int(7, false), ""); let v2 = self .builder .build_int_truncate(v2, self.intrinsics.i8_ty, ""); let v2 = self.splat_vector(v2.as_basic_value_enum(), self.intrinsics.i8x16_ty); let res = self.builder.build_right_shift(v1, v2, false, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I16x8ShrU => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i16x8(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let v2 = v2.into_int_value(); let v2 = self.builder .build_and(v2, self.intrinsics.i32_ty.const_int(15, false), ""); let v2 = self .builder .build_int_truncate(v2, self.intrinsics.i16_ty, ""); let v2 = self.splat_vector(v2.as_basic_value_enum(), self.intrinsics.i16x8_ty); let res = self.builder.build_right_shift(v1, v2, false, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32x4ShrU => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i32x4(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let v2 = v2.into_int_value(); let v2 = self.builder .build_and(v2, self.intrinsics.i32_ty.const_int(31, false), ""); let v2 = self.splat_vector(v2.as_basic_value_enum(), self.intrinsics.i32x4_ty); let res = self.builder.build_right_shift(v1, v2, false, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I64x2ShrU => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i64x2(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let v2 = v2.into_int_value(); let v2 = self.builder .build_and(v2, self.intrinsics.i32_ty.const_int(63, false), ""); let v2 = self .builder .build_int_z_extend(v2, self.intrinsics.i64_ty, ""); let v2 = self.splat_vector(v2.as_basic_value_enum(), self.intrinsics.i64x2_ty); let res = self.builder.build_right_shift(v1, v2, false, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32Rotl => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let (v1, v2) = (v1.into_int_value(), v2.into_int_value()); let lhs = self.builder.build_left_shift(v1, v2, ""); let rhs = { let int_width = self.intrinsics.i32_ty.const_int(32 as u64, false); let rhs = self.builder.build_int_sub(int_width, v2, ""); self.builder.build_right_shift(v1, rhs, false, "") }; let res = self.builder.build_or(lhs, rhs, ""); self.state.push1(res); } Operator::I64Rotl => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let (v1, v2) = (v1.into_int_value(), v2.into_int_value()); let lhs = self.builder.build_left_shift(v1, v2, ""); let rhs = { let int_width = self.intrinsics.i64_ty.const_int(64 as u64, false); let rhs = self.builder.build_int_sub(int_width, v2, ""); self.builder.build_right_shift(v1, rhs, false, "") }; let res = self.builder.build_or(lhs, rhs, ""); self.state.push1(res); } Operator::I32Rotr => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let (v1, v2) = (v1.into_int_value(), v2.into_int_value()); let lhs = self.builder.build_right_shift(v1, v2, false, ""); let rhs = { let int_width = self.intrinsics.i32_ty.const_int(32 as u64, false); let rhs = self.builder.build_int_sub(int_width, v2, ""); self.builder.build_left_shift(v1, rhs, "") }; let res = self.builder.build_or(lhs, rhs, ""); self.state.push1(res); } Operator::I64Rotr => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let (v1, v2) = (v1.into_int_value(), v2.into_int_value()); let lhs = self.builder.build_right_shift(v1, v2, false, ""); let rhs = { let int_width = self.intrinsics.i64_ty.const_int(64 as u64, false); let rhs = self.builder.build_int_sub(int_width, v2, ""); self.builder.build_left_shift(v1, rhs, "") }; let res = self.builder.build_or(lhs, rhs, ""); self.state.push1(res); } Operator::I32Clz => { let (input, info) = self.state.pop1_extra()?; let input = self.apply_pending_canonicalization(input, info); let is_zero_undef = self.intrinsics.i1_zero.as_basic_value_enum(); let res = self .builder .build_call(self.intrinsics.ctlz_i32, &[input, is_zero_undef], "") .try_as_basic_value() .left() .unwrap(); self.state.push1_extra(res, ExtraInfo::arithmetic_f32()); } Operator::I64Clz => { let (input, info) = self.state.pop1_extra()?; let input = self.apply_pending_canonicalization(input, info); let is_zero_undef = self.intrinsics.i1_zero.as_basic_value_enum(); let res = self .builder .build_call(self.intrinsics.ctlz_i64, &[input, is_zero_undef], "") .try_as_basic_value() .left() .unwrap(); self.state.push1_extra(res, ExtraInfo::arithmetic_f64()); } Operator::I32Ctz => { let (input, info) = self.state.pop1_extra()?; let input = self.apply_pending_canonicalization(input, info); let is_zero_undef = self.intrinsics.i1_zero.as_basic_value_enum(); let res = self .builder .build_call(self.intrinsics.cttz_i32, &[input, is_zero_undef], "") .try_as_basic_value() .left() .unwrap(); self.state.push1_extra(res, ExtraInfo::arithmetic_f32()); } Operator::I64Ctz => { let (input, info) = self.state.pop1_extra()?; let input = self.apply_pending_canonicalization(input, info); let is_zero_undef = self.intrinsics.i1_zero.as_basic_value_enum(); let res = self .builder .build_call(self.intrinsics.cttz_i64, &[input, is_zero_undef], "") .try_as_basic_value() .left() .unwrap(); self.state.push1_extra(res, ExtraInfo::arithmetic_f64()); } Operator::I32Popcnt => { let (input, info) = self.state.pop1_extra()?; let input = self.apply_pending_canonicalization(input, info); let res = self .builder .build_call(self.intrinsics.ctpop_i32, &[input], "") .try_as_basic_value() .left() .unwrap(); self.state.push1_extra(res, ExtraInfo::arithmetic_f32()); } Operator::I64Popcnt => { let (input, info) = self.state.pop1_extra()?; let input = self.apply_pending_canonicalization(input, info); let res = self .builder .build_call(self.intrinsics.ctpop_i64, &[input], "") .try_as_basic_value() .left() .unwrap(); self.state.push1_extra(res, ExtraInfo::arithmetic_f64()); } Operator::I32Eqz => { let input = self.state.pop1()?.into_int_value(); let cond = self.builder.build_int_compare( IntPredicate::EQ, input, self.intrinsics.i32_zero, "", ); let res = self .builder .build_int_z_extend(cond, self.intrinsics.i32_ty, ""); self.state.push1_extra(res, ExtraInfo::arithmetic_f32()); } Operator::I64Eqz => { let input = self.state.pop1()?.into_int_value(); let cond = self.builder.build_int_compare( IntPredicate::EQ, input, self.intrinsics.i64_zero, "", ); let res = self .builder .build_int_z_extend(cond, self.intrinsics.i32_ty, ""); self.state.push1_extra(res, ExtraInfo::arithmetic_f64()); } /*************************** * Floating-Point Arithmetic instructions. * https://github.com/sunfishcode/wasm-reference-manual/blob/master/WebAssembly.md#floating-point-arithmetic-instructions ***************************/ Operator::F32Add => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, v2) = (v1.into_float_value(), v2.into_float_value()); let res = self.builder.build_float_add(v1, v2, ""); self.state.push1_extra( res, (i1.strip_pending() & i2.strip_pending()) | ExtraInfo::pending_f32_nan(), ); } Operator::F64Add => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, v2) = (v1.into_float_value(), v2.into_float_value()); let res = self.builder.build_float_add(v1, v2, ""); self.state.push1_extra( res, (i1.strip_pending() & i2.strip_pending()) | ExtraInfo::pending_f64_nan(), ); } Operator::F32x4Add => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, i1) = self.v128_into_f32x4(v1, i1); let (v2, i2) = self.v128_into_f32x4(v2, i2); let res = self.builder.build_float_add(v1, v2, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1_extra( res, (i1.strip_pending() & i2.strip_pending()) | ExtraInfo::pending_f32_nan(), ); } Operator::F64x2Add => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, i1) = self.v128_into_f64x2(v1, i1); let (v2, i2) = self.v128_into_f64x2(v2, i2); let res = self.builder.build_float_add(v1, v2, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1_extra( res, (i1.strip_pending() & i2.strip_pending()) | ExtraInfo::pending_f64_nan(), ); } Operator::F32Sub => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, v2) = (v1.into_float_value(), v2.into_float_value()); let res = self.builder.build_float_sub(v1, v2, ""); self.state.push1_extra( res, (i1.strip_pending() & i2.strip_pending()) | ExtraInfo::pending_f32_nan(), ); } Operator::F64Sub => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, v2) = (v1.into_float_value(), v2.into_float_value()); let res = self.builder.build_float_sub(v1, v2, ""); self.state.push1_extra( res, (i1.strip_pending() & i2.strip_pending()) | ExtraInfo::pending_f64_nan(), ); } Operator::F32x4Sub => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, i1) = self.v128_into_f32x4(v1, i1); let (v2, i2) = self.v128_into_f32x4(v2, i2); let res = self.builder.build_float_sub(v1, v2, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1_extra( res, (i1.strip_pending() & i2.strip_pending()) | ExtraInfo::pending_f32_nan(), ); } Operator::F64x2Sub => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, i1) = self.v128_into_f64x2(v1, i1); let (v2, i2) = self.v128_into_f64x2(v2, i2); let res = self.builder.build_float_sub(v1, v2, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1_extra( res, (i1.strip_pending() & i2.strip_pending()) | ExtraInfo::pending_f64_nan(), ); } Operator::F32Mul => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, v2) = (v1.into_float_value(), v2.into_float_value()); let res = self.builder.build_float_mul(v1, v2, ""); self.state.push1_extra( res, (i1.strip_pending() & i2.strip_pending()) | ExtraInfo::pending_f32_nan(), ); } Operator::F64Mul => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, v2) = (v1.into_float_value(), v2.into_float_value()); let res = self.builder.build_float_mul(v1, v2, ""); self.state.push1_extra( res, (i1.strip_pending() & i2.strip_pending()) | ExtraInfo::pending_f64_nan(), ); } Operator::F32x4Mul => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, i1) = self.v128_into_f32x4(v1, i1); let (v2, i2) = self.v128_into_f32x4(v2, i2); let res = self.builder.build_float_mul(v1, v2, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1_extra( res, (i1.strip_pending() & i2.strip_pending()) | ExtraInfo::pending_f32_nan(), ); } Operator::F64x2Mul => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, i1) = self.v128_into_f64x2(v1, i1); let (v2, i2) = self.v128_into_f64x2(v2, i2); let res = self.builder.build_float_mul(v1, v2, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1_extra( res, (i1.strip_pending() & i2.strip_pending()) | ExtraInfo::pending_f64_nan(), ); } Operator::F32Div => { let (v1, v2) = self.state.pop2()?; let (v1, v2) = (v1.into_float_value(), v2.into_float_value()); let res = self.builder.build_float_div(v1, v2, ""); self.state.push1_extra(res, ExtraInfo::pending_f32_nan()); } Operator::F64Div => { let (v1, v2) = self.state.pop2()?; let (v1, v2) = (v1.into_float_value(), v2.into_float_value()); let res = self.builder.build_float_div(v1, v2, ""); self.state.push1_extra(res, ExtraInfo::pending_f64_nan()); } Operator::F32x4Div => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_f32x4(v1, i1); let (v2, _) = self.v128_into_f32x4(v2, i2); let res = self.builder.build_float_div(v1, v2, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1_extra(res, ExtraInfo::pending_f32_nan()); } Operator::F64x2Div => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_f64x2(v1, i1); let (v2, _) = self.v128_into_f64x2(v2, i2); let res = self.builder.build_float_div(v1, v2, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1_extra(res, ExtraInfo::pending_f64_nan()); } Operator::F32Sqrt => { let input = self.state.pop1()?; let res = self .builder .build_call(self.intrinsics.sqrt_f32, &[input], "") .try_as_basic_value() .left() .unwrap(); self.state.push1_extra(res, ExtraInfo::pending_f32_nan()); } Operator::F64Sqrt => { let input = self.state.pop1()?; let res = self .builder .build_call(self.intrinsics.sqrt_f64, &[input], "") .try_as_basic_value() .left() .unwrap(); self.state.push1_extra(res, ExtraInfo::pending_f64_nan()); } Operator::F32x4Sqrt => { let (v, i) = self.state.pop1_extra()?; let (v, _) = self.v128_into_f32x4(v, i); let res = self .builder .build_call(self.intrinsics.sqrt_f32x4, &[v.as_basic_value_enum()], "") .try_as_basic_value() .left() .unwrap(); let bits = self .builder .build_bitcast(res, self.intrinsics.i128_ty, "bits"); self.state.push1_extra(bits, ExtraInfo::pending_f32_nan()); } Operator::F64x2Sqrt => { let (v, i) = self.state.pop1_extra()?; let (v, _) = self.v128_into_f64x2(v, i); let res = self .builder .build_call(self.intrinsics.sqrt_f64x2, &[v.as_basic_value_enum()], "") .try_as_basic_value() .left() .unwrap(); let bits = self .builder .build_bitcast(res, self.intrinsics.i128_ty, "bits"); self.state.push1(bits); } Operator::F32Min => { // This implements the same logic as LLVM's @llvm.minimum // intrinsic would, but x86 lowering of that intrinsic // encounters a fatal error in LLVM 8 and LLVM 9. let (v1, v2) = self.state.pop2()?; // To detect min(-0.0, 0.0), we check whether the integer // representations are equal. There's one other case where that // can happen: non-canonical NaNs. Here we unconditionally // canonicalize the NaNs. let v1 = self.canonicalize_nans(v1); let v2 = self.canonicalize_nans(v2); let (v1, v2) = (v1.into_float_value(), v2.into_float_value()); let v1_is_nan = self.builder.build_float_compare( FloatPredicate::UNO, v1, self.intrinsics.f32_zero, "nan", ); let v2_is_not_nan = self.builder.build_float_compare( FloatPredicate::ORD, v2, self.intrinsics.f32_zero, "notnan", ); let v1_repr = self .builder .build_bitcast(v1, self.intrinsics.i32_ty, "") .into_int_value(); let v2_repr = self .builder .build_bitcast(v2, self.intrinsics.i32_ty, "") .into_int_value(); let repr_ne = self.builder .build_int_compare(IntPredicate::NE, v1_repr, v2_repr, ""); let float_eq = self .builder .build_float_compare(FloatPredicate::OEQ, v1, v2, ""); let min_cmp = self .builder .build_float_compare(FloatPredicate::OLT, v1, v2, ""); let negative_zero = self.intrinsics.f32_ty.const_float(-0.0); let v2 = self .builder .build_select( self.builder.build_and( self.builder.build_and(float_eq, repr_ne, ""), v2_is_not_nan, "", ), negative_zero, v2, "", ) .into_float_value(); let res = self.builder.build_select( self.builder.build_or(v1_is_nan, min_cmp, ""), v1, v2, "", ); // Because inputs were canonicalized, we always produce // canonical NaN outputs. No pending NaN cleanup. self.state.push1_extra(res, ExtraInfo::arithmetic_f32()); } Operator::F64Min => { // This implements the same logic as LLVM's @llvm.minimum // intrinsic would, but x86 lowering of that intrinsic // encounters a fatal error in LLVM 8 and LLVM 9. let (v1, v2) = self.state.pop2()?; // To detect min(-0.0, 0.0), we check whether the integer // representations are equal. There's one other case where that // can happen: non-canonical NaNs. Here we unconditionally // canonicalize the NaNs. let v1 = self.canonicalize_nans(v1); let v2 = self.canonicalize_nans(v2); let (v1, v2) = (v1.into_float_value(), v2.into_float_value()); let v1_is_nan = self.builder.build_float_compare( FloatPredicate::UNO, v1, self.intrinsics.f64_zero, "nan", ); let v2_is_not_nan = self.builder.build_float_compare( FloatPredicate::ORD, v2, self.intrinsics.f64_zero, "notnan", ); let v1_repr = self .builder .build_bitcast(v1, self.intrinsics.i64_ty, "") .into_int_value(); let v2_repr = self .builder .build_bitcast(v2, self.intrinsics.i64_ty, "") .into_int_value(); let repr_ne = self.builder .build_int_compare(IntPredicate::NE, v1_repr, v2_repr, ""); let float_eq = self .builder .build_float_compare(FloatPredicate::OEQ, v1, v2, ""); let min_cmp = self .builder .build_float_compare(FloatPredicate::OLT, v1, v2, ""); let negative_zero = self.intrinsics.f64_ty.const_float(-0.0); let v2 = self .builder .build_select( self.builder.build_and( self.builder.build_and(float_eq, repr_ne, ""), v2_is_not_nan, "", ), negative_zero, v2, "", ) .into_float_value(); let res = self.builder.build_select( self.builder.build_or(v1_is_nan, min_cmp, ""), v1, v2, "", ); // Because inputs were canonicalized, we always produce // canonical NaN outputs. No pending NaN cleanup. self.state.push1_extra(res, ExtraInfo::arithmetic_f64()); } Operator::F32x4Min => { // This implements the same logic as LLVM's @llvm.minimum // intrinsic would, but x86 lowering of that intrinsic // encounters a fatal error in LLVM 8 and LLVM 9. let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_f32x4(v1, i1); let (v2, _) = self.v128_into_f32x4(v2, i2); // To detect min(-0.0, 0.0), we check whether the integer // representations are equal. There's one other case where that // can happen: non-canonical NaNs. Here we unconditionally // canonicalize the NaNs. Note that this is a different // canonicalization from that which may be performed in the // v128_into_f32x4 self.function. That may canonicalize as F64x2 if // previous computations may have emitted F64x2 NaNs. let v1 = self.canonicalize_nans(v1.as_basic_value_enum()); let v2 = self.canonicalize_nans(v2.as_basic_value_enum()); let (v1, v2) = (v1.into_vector_value(), v2.into_vector_value()); let v1_is_nan = self.builder.build_float_compare( FloatPredicate::UNO, v1, self.intrinsics.f32x4_zero, "nan", ); let v2_is_not_nan = self.builder.build_float_compare( FloatPredicate::ORD, v2, self.intrinsics.f32x4_zero, "notnan", ); let v1_repr = self .builder .build_bitcast(v1, self.intrinsics.i32x4_ty, "") .into_vector_value(); let v2_repr = self .builder .build_bitcast(v2, self.intrinsics.i32x4_ty, "") .into_vector_value(); let repr_ne = self.builder .build_int_compare(IntPredicate::NE, v1_repr, v2_repr, ""); let float_eq = self .builder .build_float_compare(FloatPredicate::OEQ, v1, v2, ""); let min_cmp = self .builder .build_float_compare(FloatPredicate::OLT, v1, v2, ""); let negative_zero = self.splat_vector( self.intrinsics .f32_ty .const_float(-0.0) .as_basic_value_enum(), self.intrinsics.f32x4_ty, ); let v2 = self .builder .build_select( self.builder.build_and( self.builder.build_and(float_eq, repr_ne, ""), v2_is_not_nan, "", ), negative_zero, v2, "", ) .into_vector_value(); let res = self.builder.build_select( self.builder.build_or(v1_is_nan, min_cmp, ""), v1, v2, "", ); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); // Because inputs were canonicalized, we always produce // canonical NaN outputs. No pending NaN cleanup. self.state.push1_extra(res, ExtraInfo::arithmetic_f32()); } Operator::F64x2Min => { // This implements the same logic as LLVM's @llvm.minimum // intrinsic would, but x86 lowering of that intrinsic // encounters a fatal error in LLVM 8 and LLVM 9. let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_f64x2(v1, i1); let (v2, _) = self.v128_into_f64x2(v2, i2); // To detect min(-0.0, 0.0), we check whether the integer // representations are equal. There's one other case where that // can happen: non-canonical NaNs. Here we unconditionally // canonicalize the NaNs. Note that this is a different // canonicalization from that which may be performed in the // v128_into_f32x4 self.function. That may canonicalize as F64x2 if // previous computations may have emitted F64x2 NaNs. let v1 = self.canonicalize_nans(v1.as_basic_value_enum()); let v2 = self.canonicalize_nans(v2.as_basic_value_enum()); let (v1, v2) = (v1.into_vector_value(), v2.into_vector_value()); let v1_is_nan = self.builder.build_float_compare( FloatPredicate::UNO, v1, self.intrinsics.f64x2_zero, "nan", ); let v2_is_not_nan = self.builder.build_float_compare( FloatPredicate::ORD, v2, self.intrinsics.f64x2_zero, "notnan", ); let v1_repr = self .builder .build_bitcast(v1, self.intrinsics.i64x2_ty, "") .into_vector_value(); let v2_repr = self .builder .build_bitcast(v2, self.intrinsics.i64x2_ty, "") .into_vector_value(); let repr_ne = self.builder .build_int_compare(IntPredicate::NE, v1_repr, v2_repr, ""); let float_eq = self .builder .build_float_compare(FloatPredicate::OEQ, v1, v2, ""); let min_cmp = self .builder .build_float_compare(FloatPredicate::OLT, v1, v2, ""); let negative_zero = self.splat_vector( self.intrinsics .f64_ty .const_float(-0.0) .as_basic_value_enum(), self.intrinsics.f64x2_ty, ); let v2 = self .builder .build_select( self.builder.build_and( self.builder.build_and(float_eq, repr_ne, ""), v2_is_not_nan, "", ), negative_zero, v2, "", ) .into_vector_value(); let res = self.builder.build_select( self.builder.build_or(v1_is_nan, min_cmp, ""), v1, v2, "", ); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); // Because inputs were canonicalized, we always produce // canonical NaN outputs. No pending NaN cleanup. self.state.push1_extra(res, ExtraInfo::arithmetic_f64()); } Operator::F32Max => { // This implements the same logic as LLVM's @llvm.maximum // intrinsic would, but x86 lowering of that intrinsic // encounters a fatal error in LLVM 8 and LLVM 9. let (v1, v2) = self.state.pop2()?; // To detect min(-0.0, 0.0), we check whether the integer // representations are equal. There's one other case where that // can happen: non-canonical NaNs. Here we unconditionally // canonicalize the NaNs. let v1 = self.canonicalize_nans(v1); let v2 = self.canonicalize_nans(v2); let (v1, v2) = (v1.into_float_value(), v2.into_float_value()); let v1_is_nan = self.builder.build_float_compare( FloatPredicate::UNO, v1, self.intrinsics.f32_zero, "nan", ); let v2_is_not_nan = self.builder.build_float_compare( FloatPredicate::ORD, v2, self.intrinsics.f32_zero, "notnan", ); let v1_repr = self .builder .build_bitcast(v1, self.intrinsics.i32_ty, "") .into_int_value(); let v2_repr = self .builder .build_bitcast(v2, self.intrinsics.i32_ty, "") .into_int_value(); let repr_ne = self.builder .build_int_compare(IntPredicate::NE, v1_repr, v2_repr, ""); let float_eq = self .builder .build_float_compare(FloatPredicate::OEQ, v1, v2, ""); let min_cmp = self .builder .build_float_compare(FloatPredicate::OGT, v1, v2, ""); let v2 = self .builder .build_select( self.builder.build_and( self.builder.build_and(float_eq, repr_ne, ""), v2_is_not_nan, "", ), self.intrinsics.f32_zero, v2, "", ) .into_float_value(); let res = self.builder.build_select( self.builder.build_or(v1_is_nan, min_cmp, ""), v1, v2, "", ); // Because inputs were canonicalized, we always produce // canonical NaN outputs. No pending NaN cleanup. self.state.push1_extra(res, ExtraInfo::arithmetic_f32()); } Operator::F64Max => { // This implements the same logic as LLVM's @llvm.maximum // intrinsic would, but x86 lowering of that intrinsic // encounters a fatal error in LLVM 8 and LLVM 9. let (v1, v2) = self.state.pop2()?; // To detect min(-0.0, 0.0), we check whether the integer // representations are equal. There's one other case where that // can happen: non-canonical NaNs. Here we unconditionally // canonicalize the NaNs. let v1 = self.canonicalize_nans(v1); let v2 = self.canonicalize_nans(v2); let (v1, v2) = (v1.into_float_value(), v2.into_float_value()); let v1_is_nan = self.builder.build_float_compare( FloatPredicate::UNO, v1, self.intrinsics.f64_zero, "nan", ); let v2_is_not_nan = self.builder.build_float_compare( FloatPredicate::ORD, v2, self.intrinsics.f64_zero, "notnan", ); let v1_repr = self .builder .build_bitcast(v1, self.intrinsics.i64_ty, "") .into_int_value(); let v2_repr = self .builder .build_bitcast(v2, self.intrinsics.i64_ty, "") .into_int_value(); let repr_ne = self.builder .build_int_compare(IntPredicate::NE, v1_repr, v2_repr, ""); let float_eq = self .builder .build_float_compare(FloatPredicate::OEQ, v1, v2, ""); let min_cmp = self .builder .build_float_compare(FloatPredicate::OGT, v1, v2, ""); let v2 = self .builder .build_select( self.builder.build_and( self.builder.build_and(float_eq, repr_ne, ""), v2_is_not_nan, "", ), self.intrinsics.f64_zero, v2, "", ) .into_float_value(); let res = self.builder.build_select( self.builder.build_or(v1_is_nan, min_cmp, ""), v1, v2, "", ); // Because inputs were canonicalized, we always produce // canonical NaN outputs. No pending NaN cleanup. self.state.push1_extra(res, ExtraInfo::arithmetic_f64()); } Operator::F32x4Max => { // This implements the same logic as LLVM's @llvm.maximum // intrinsic would, but x86 lowering of that intrinsic // encounters a fatal error in LLVM 8 and LLVM 9. let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_f32x4(v1, i1); let (v2, _) = self.v128_into_f32x4(v2, i2); // To detect min(-0.0, 0.0), we check whether the integer // representations are equal. There's one other case where that // can happen: non-canonical NaNs. Here we unconditionally // canonicalize the NaNs. Note that this is a different // canonicalization from that which may be performed in the // v128_into_f32x4 self.function. That may canonicalize as F64x2 if // previous computations may have emitted F64x2 NaNs. let v1 = self.canonicalize_nans(v1.as_basic_value_enum()); let v2 = self.canonicalize_nans(v2.as_basic_value_enum()); let (v1, v2) = (v1.into_vector_value(), v2.into_vector_value()); let v1_is_nan = self.builder.build_float_compare( FloatPredicate::UNO, v1, self.intrinsics.f32x4_zero, "nan", ); let v2_is_not_nan = self.builder.build_float_compare( FloatPredicate::ORD, v2, self.intrinsics.f32x4_zero, "notnan", ); let v1_repr = self .builder .build_bitcast(v1, self.intrinsics.i32x4_ty, "") .into_vector_value(); let v2_repr = self .builder .build_bitcast(v2, self.intrinsics.i32x4_ty, "") .into_vector_value(); let repr_ne = self.builder .build_int_compare(IntPredicate::NE, v1_repr, v2_repr, ""); let float_eq = self .builder .build_float_compare(FloatPredicate::OEQ, v1, v2, ""); let min_cmp = self .builder .build_float_compare(FloatPredicate::OGT, v1, v2, ""); let zero = self.splat_vector( self.intrinsics.f32_zero.as_basic_value_enum(), self.intrinsics.f32x4_ty, ); let v2 = self .builder .build_select( self.builder.build_and( self.builder.build_and(float_eq, repr_ne, ""), v2_is_not_nan, "", ), zero, v2, "", ) .into_vector_value(); let res = self.builder.build_select( self.builder.build_or(v1_is_nan, min_cmp, ""), v1, v2, "", ); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); // Because inputs were canonicalized, we always produce // canonical NaN outputs. No pending NaN cleanup. self.state.push1_extra(res, ExtraInfo::arithmetic_f32()); } Operator::F64x2Max => { // This implements the same logic as LLVM's @llvm.maximum // intrinsic would, but x86 lowering of that intrinsic // encounters a fatal error in LLVM 8 and LLVM 9. let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_f64x2(v1, i1); let (v2, _) = self.v128_into_f64x2(v2, i2); // To detect min(-0.0, 0.0), we check whether the integer // representations are equal. There's one other case where that // can happen: non-canonical NaNs. Here we unconditionally // canonicalize the NaNs. Note that this is a different // canonicalization from that which may be performed in the // v128_into_f32x4 self.function. That may canonicalize as F64x2 if // previous computations may have emitted F64x2 NaNs. let v1 = self.canonicalize_nans(v1.as_basic_value_enum()); let v2 = self.canonicalize_nans(v2.as_basic_value_enum()); let (v1, v2) = (v1.into_vector_value(), v2.into_vector_value()); let v1_is_nan = self.builder.build_float_compare( FloatPredicate::UNO, v1, self.intrinsics.f64x2_zero, "nan", ); let v2_is_not_nan = self.builder.build_float_compare( FloatPredicate::ORD, v2, self.intrinsics.f64x2_zero, "notnan", ); let v1_repr = self .builder .build_bitcast(v1, self.intrinsics.i64x2_ty, "") .into_vector_value(); let v2_repr = self .builder .build_bitcast(v2, self.intrinsics.i64x2_ty, "") .into_vector_value(); let repr_ne = self.builder .build_int_compare(IntPredicate::NE, v1_repr, v2_repr, ""); let float_eq = self .builder .build_float_compare(FloatPredicate::OEQ, v1, v2, ""); let min_cmp = self .builder .build_float_compare(FloatPredicate::OGT, v1, v2, ""); let zero = self.splat_vector( self.intrinsics.f64_zero.as_basic_value_enum(), self.intrinsics.f64x2_ty, ); let v2 = self .builder .build_select( self.builder.build_and( self.builder.build_and(float_eq, repr_ne, ""), v2_is_not_nan, "", ), zero, v2, "", ) .into_vector_value(); let res = self.builder.build_select( self.builder.build_or(v1_is_nan, min_cmp, ""), v1, v2, "", ); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); // Because inputs were canonicalized, we always produce // canonical NaN outputs. No pending NaN cleanup. self.state.push1_extra(res, ExtraInfo::arithmetic_f64()); } Operator::F32Ceil => { let (input, info) = self.state.pop1_extra()?; let res = self .builder .build_call(self.intrinsics.ceil_f32, &[input], "") .try_as_basic_value() .left() .unwrap(); self.state .push1_extra(res, info | ExtraInfo::pending_f32_nan()); } Operator::F64Ceil => { let (input, info) = self.state.pop1_extra()?; let res = self .builder .build_call(self.intrinsics.ceil_f64, &[input], "") .try_as_basic_value() .left() .unwrap(); self.state .push1_extra(res, info | ExtraInfo::pending_f64_nan()); } Operator::F32Floor => { let (input, info) = self.state.pop1_extra()?; let res = self .builder .build_call(self.intrinsics.floor_f32, &[input], "") .try_as_basic_value() .left() .unwrap(); self.state .push1_extra(res, info | ExtraInfo::pending_f32_nan()); } Operator::F64Floor => { let (input, info) = self.state.pop1_extra()?; let res = self .builder .build_call(self.intrinsics.floor_f64, &[input], "") .try_as_basic_value() .left() .unwrap(); self.state .push1_extra(res, info | ExtraInfo::pending_f64_nan()); } Operator::F32Trunc => { let (v, i) = self.state.pop1_extra()?; let res = self .builder .build_call(self.intrinsics.trunc_f32, &[v.as_basic_value_enum()], "") .try_as_basic_value() .left() .unwrap(); self.state .push1_extra(res, i | ExtraInfo::pending_f32_nan()); } Operator::F64Trunc => { let (v, i) = self.state.pop1_extra()?; let res = self .builder .build_call(self.intrinsics.trunc_f64, &[v.as_basic_value_enum()], "") .try_as_basic_value() .left() .unwrap(); self.state .push1_extra(res, i | ExtraInfo::pending_f64_nan()); } Operator::F32Nearest => { let (v, i) = self.state.pop1_extra()?; let res = self .builder .build_call( self.intrinsics.nearbyint_f32, &[v.as_basic_value_enum()], "", ) .try_as_basic_value() .left() .unwrap(); self.state .push1_extra(res, i | ExtraInfo::pending_f32_nan()); } Operator::F64Nearest => { let (v, i) = self.state.pop1_extra()?; let res = self .builder .build_call( self.intrinsics.nearbyint_f64, &[v.as_basic_value_enum()], "", ) .try_as_basic_value() .left() .unwrap(); self.state .push1_extra(res, i | ExtraInfo::pending_f64_nan()); } Operator::F32Abs => { let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i); let res = self .builder .build_call(self.intrinsics.fabs_f32, &[v.as_basic_value_enum()], "") .try_as_basic_value() .left() .unwrap(); // The exact NaN returned by F32Abs is fully defined. Do not // adjust. self.state.push1_extra(res, i.strip_pending()); } Operator::F64Abs => { let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i); let res = self .builder .build_call(self.intrinsics.fabs_f64, &[v.as_basic_value_enum()], "") .try_as_basic_value() .left() .unwrap(); // The exact NaN returned by F64Abs is fully defined. Do not // adjust. self.state.push1_extra(res, i.strip_pending()); } Operator::F32x4Abs => { let (v, i) = self.state.pop1_extra()?; let v = self.builder .build_bitcast(v.into_int_value(), self.intrinsics.f32x4_ty, ""); let v = self.apply_pending_canonicalization(v, i); let res = self .builder .build_call(self.intrinsics.fabs_f32x4, &[v.as_basic_value_enum()], "") .try_as_basic_value() .left() .unwrap(); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); // The exact NaN returned by F32x4Abs is fully defined. Do not // adjust. self.state.push1_extra(res, i.strip_pending()); } Operator::F64x2Abs => { let (v, i) = self.state.pop1_extra()?; let v = self.builder .build_bitcast(v.into_int_value(), self.intrinsics.f64x2_ty, ""); let v = self.apply_pending_canonicalization(v, i); let res = self .builder .build_call(self.intrinsics.fabs_f64x2, &[v], "") .try_as_basic_value() .left() .unwrap(); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); // The exact NaN returned by F32x4Abs is fully defined. Do not // adjust. self.state.push1_extra(res, i.strip_pending()); } Operator::F32x4Neg => { let (v, i) = self.state.pop1_extra()?; let v = self.builder .build_bitcast(v.into_int_value(), self.intrinsics.f32x4_ty, ""); let v = self .apply_pending_canonicalization(v, i) .into_vector_value(); let res = self.builder.build_float_neg(v, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); // The exact NaN returned by F32x4Neg is fully defined. Do not // adjust. self.state.push1_extra(res, i.strip_pending()); } Operator::F64x2Neg => { let (v, i) = self.state.pop1_extra()?; let v = self.builder .build_bitcast(v.into_int_value(), self.intrinsics.f64x2_ty, ""); let v = self .apply_pending_canonicalization(v, i) .into_vector_value(); let res = self.builder.build_float_neg(v, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); // The exact NaN returned by F64x2Neg is fully defined. Do not // adjust. self.state.push1_extra(res, i.strip_pending()); } Operator::F32Neg | Operator::F64Neg => { let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i).into_float_value(); let res = self.builder.build_float_neg(v, ""); // The exact NaN returned by F32Neg and F64Neg are fully defined. // Do not adjust. self.state.push1_extra(res, i.strip_pending()); } Operator::F32Copysign => { let ((mag, mag_info), (sgn, sgn_info)) = self.state.pop2_extra()?; let mag = self.apply_pending_canonicalization(mag, mag_info); let sgn = self.apply_pending_canonicalization(sgn, sgn_info); let res = self .builder .build_call(self.intrinsics.copysign_f32, &[mag, sgn], "") .try_as_basic_value() .left() .unwrap(); // The exact NaN returned by F32Copysign is fully defined. // Do not adjust. self.state.push1_extra(res, mag_info.strip_pending()); } Operator::F64Copysign => { let ((mag, mag_info), (sgn, sgn_info)) = self.state.pop2_extra()?; let mag = self.apply_pending_canonicalization(mag, mag_info); let sgn = self.apply_pending_canonicalization(sgn, sgn_info); let res = self .builder .build_call(self.intrinsics.copysign_f64, &[mag, sgn], "") .try_as_basic_value() .left() .unwrap(); // The exact NaN returned by F32Copysign is fully defined. // Do not adjust. self.state.push1_extra(res, mag_info.strip_pending()); } /*************************** * Integer Comparison instructions. * https://github.com/sunfishcode/wasm-reference-manual/blob/master/WebAssembly.md#integer-comparison-instructions ***************************/ Operator::I32Eq | Operator::I64Eq => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let (v1, v2) = (v1.into_int_value(), v2.into_int_value()); let cond = self.builder.build_int_compare(IntPredicate::EQ, v1, v2, ""); let res = self .builder .build_int_z_extend(cond, self.intrinsics.i32_ty, ""); self.state.push1_extra( res, ExtraInfo::arithmetic_f32() | ExtraInfo::arithmetic_f64(), ); } Operator::I8x16Eq => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i8x16(v1, i1); let (v2, _) = self.v128_into_i8x16(v2, i2); let res = self.builder.build_int_compare(IntPredicate::EQ, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i8x16_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I16x8Eq => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i16x8(v1, i1); let (v2, _) = self.v128_into_i16x8(v2, i2); let res = self.builder.build_int_compare(IntPredicate::EQ, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i16x8_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32x4Eq => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i32x4(v1, i1); let (v2, _) = self.v128_into_i32x4(v2, i2); let res = self.builder.build_int_compare(IntPredicate::EQ, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i32x4_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32Ne | Operator::I64Ne => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let (v1, v2) = (v1.into_int_value(), v2.into_int_value()); let cond = self.builder.build_int_compare(IntPredicate::NE, v1, v2, ""); let res = self .builder .build_int_z_extend(cond, self.intrinsics.i32_ty, ""); self.state.push1_extra( res, ExtraInfo::arithmetic_f32() | ExtraInfo::arithmetic_f64(), ); } Operator::I8x16Ne => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i8x16(v1, i1); let (v2, _) = self.v128_into_i8x16(v2, i2); let res = self.builder.build_int_compare(IntPredicate::NE, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i8x16_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I16x8Ne => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i16x8(v1, i1); let (v2, _) = self.v128_into_i16x8(v2, i2); let res = self.builder.build_int_compare(IntPredicate::NE, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i16x8_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32x4Ne => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i32x4(v1, i1); let (v2, _) = self.v128_into_i32x4(v2, i2); let res = self.builder.build_int_compare(IntPredicate::NE, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i32x4_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32LtS | Operator::I64LtS => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let (v1, v2) = (v1.into_int_value(), v2.into_int_value()); let cond = self .builder .build_int_compare(IntPredicate::SLT, v1, v2, ""); let res = self .builder .build_int_z_extend(cond, self.intrinsics.i32_ty, ""); self.state.push1_extra( res, ExtraInfo::arithmetic_f32() | ExtraInfo::arithmetic_f64(), ); } Operator::I8x16LtS => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i8x16(v1, i1); let (v2, _) = self.v128_into_i8x16(v2, i2); let res = self .builder .build_int_compare(IntPredicate::SLT, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i8x16_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I16x8LtS => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i16x8(v1, i1); let (v2, _) = self.v128_into_i16x8(v2, i2); let res = self .builder .build_int_compare(IntPredicate::SLT, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i16x8_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32x4LtS => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i32x4(v1, i1); let (v2, _) = self.v128_into_i32x4(v2, i2); let res = self .builder .build_int_compare(IntPredicate::SLT, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i32x4_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32LtU | Operator::I64LtU => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let (v1, v2) = (v1.into_int_value(), v2.into_int_value()); let cond = self .builder .build_int_compare(IntPredicate::ULT, v1, v2, ""); let res = self .builder .build_int_z_extend(cond, self.intrinsics.i32_ty, ""); self.state.push1(res); } Operator::I8x16LtU => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i8x16(v1, i1); let (v2, _) = self.v128_into_i8x16(v2, i2); let res = self .builder .build_int_compare(IntPredicate::ULT, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i8x16_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I16x8LtU => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i16x8(v1, i1); let (v2, _) = self.v128_into_i16x8(v2, i2); let res = self .builder .build_int_compare(IntPredicate::ULT, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i16x8_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32x4LtU => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i32x4(v1, i1); let (v2, _) = self.v128_into_i32x4(v2, i2); let res = self .builder .build_int_compare(IntPredicate::ULT, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i32x4_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32LeS | Operator::I64LeS => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let (v1, v2) = (v1.into_int_value(), v2.into_int_value()); let cond = self .builder .build_int_compare(IntPredicate::SLE, v1, v2, ""); let res = self .builder .build_int_z_extend(cond, self.intrinsics.i32_ty, ""); self.state.push1_extra( res, ExtraInfo::arithmetic_f32() | ExtraInfo::arithmetic_f64(), ); } Operator::I8x16LeS => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i8x16(v1, i1); let (v2, _) = self.v128_into_i8x16(v2, i2); let res = self .builder .build_int_compare(IntPredicate::SLE, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i8x16_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I16x8LeS => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i16x8(v1, i1); let (v2, _) = self.v128_into_i16x8(v2, i2); let res = self .builder .build_int_compare(IntPredicate::SLE, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i16x8_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32x4LeS => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i32x4(v1, i1); let (v2, _) = self.v128_into_i32x4(v2, i2); let res = self .builder .build_int_compare(IntPredicate::SLE, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i32x4_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32LeU | Operator::I64LeU => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let (v1, v2) = (v1.into_int_value(), v2.into_int_value()); let cond = self .builder .build_int_compare(IntPredicate::ULE, v1, v2, ""); let res = self .builder .build_int_z_extend(cond, self.intrinsics.i32_ty, ""); self.state.push1_extra( res, ExtraInfo::arithmetic_f32() | ExtraInfo::arithmetic_f64(), ); } Operator::I8x16LeU => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i8x16(v1, i1); let (v2, _) = self.v128_into_i8x16(v2, i2); let res = self .builder .build_int_compare(IntPredicate::ULE, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i8x16_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I16x8LeU => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i16x8(v1, i1); let (v2, _) = self.v128_into_i16x8(v2, i2); let res = self .builder .build_int_compare(IntPredicate::ULE, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i16x8_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32x4LeU => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i32x4(v1, i1); let (v2, _) = self.v128_into_i32x4(v2, i2); let res = self .builder .build_int_compare(IntPredicate::ULE, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i32x4_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32GtS | Operator::I64GtS => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let (v1, v2) = (v1.into_int_value(), v2.into_int_value()); let cond = self .builder .build_int_compare(IntPredicate::SGT, v1, v2, ""); let res = self .builder .build_int_z_extend(cond, self.intrinsics.i32_ty, ""); self.state.push1_extra( res, ExtraInfo::arithmetic_f32() | ExtraInfo::arithmetic_f64(), ); } Operator::I8x16GtS => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i8x16(v1, i1); let (v2, _) = self.v128_into_i8x16(v2, i2); let res = self .builder .build_int_compare(IntPredicate::SGT, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i8x16_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I16x8GtS => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i16x8(v1, i1); let (v2, _) = self.v128_into_i16x8(v2, i2); let res = self .builder .build_int_compare(IntPredicate::SGT, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i16x8_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32x4GtS => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i32x4(v1, i1); let (v2, _) = self.v128_into_i32x4(v2, i2); let res = self .builder .build_int_compare(IntPredicate::SGT, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i32x4_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32GtU | Operator::I64GtU => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let (v1, v2) = (v1.into_int_value(), v2.into_int_value()); let cond = self .builder .build_int_compare(IntPredicate::UGT, v1, v2, ""); let res = self .builder .build_int_z_extend(cond, self.intrinsics.i32_ty, ""); self.state.push1_extra( res, ExtraInfo::arithmetic_f32() | ExtraInfo::arithmetic_f64(), ); } Operator::I8x16GtU => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i8x16(v1, i1); let (v2, _) = self.v128_into_i8x16(v2, i2); let res = self .builder .build_int_compare(IntPredicate::UGT, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i8x16_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I16x8GtU => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i16x8(v1, i1); let (v2, _) = self.v128_into_i16x8(v2, i2); let res = self .builder .build_int_compare(IntPredicate::UGT, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i16x8_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32x4GtU => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i32x4(v1, i1); let (v2, _) = self.v128_into_i32x4(v2, i2); let res = self .builder .build_int_compare(IntPredicate::UGT, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i32x4_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32GeS | Operator::I64GeS => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let (v1, v2) = (v1.into_int_value(), v2.into_int_value()); let cond = self .builder .build_int_compare(IntPredicate::SGE, v1, v2, ""); let res = self .builder .build_int_z_extend(cond, self.intrinsics.i32_ty, ""); self.state.push1(res); } Operator::I8x16GeS => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i8x16(v1, i1); let (v2, _) = self.v128_into_i8x16(v2, i2); let res = self .builder .build_int_compare(IntPredicate::SGE, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i8x16_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I16x8GeS => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i16x8(v1, i1); let (v2, _) = self.v128_into_i16x8(v2, i2); let res = self .builder .build_int_compare(IntPredicate::SGE, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i16x8_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32x4GeS => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i32x4(v1, i1); let (v2, _) = self.v128_into_i32x4(v2, i2); let res = self .builder .build_int_compare(IntPredicate::SGE, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i32x4_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32GeU | Operator::I64GeU => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let (v1, v2) = (v1.into_int_value(), v2.into_int_value()); let cond = self .builder .build_int_compare(IntPredicate::UGE, v1, v2, ""); let res = self .builder .build_int_z_extend(cond, self.intrinsics.i32_ty, ""); self.state.push1_extra( res, ExtraInfo::arithmetic_f32() | ExtraInfo::arithmetic_f64(), ); } Operator::I8x16GeU => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i8x16(v1, i1); let (v2, _) = self.v128_into_i8x16(v2, i2); let res = self .builder .build_int_compare(IntPredicate::UGE, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i8x16_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I16x8GeU => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i16x8(v1, i1); let (v2, _) = self.v128_into_i16x8(v2, i2); let res = self .builder .build_int_compare(IntPredicate::UGE, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i16x8_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32x4GeU => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i32x4(v1, i1); let (v2, _) = self.v128_into_i32x4(v2, i2); let res = self .builder .build_int_compare(IntPredicate::UGE, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i32x4_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } /*************************** * Floating-Point Comparison instructions. * https://github.com/sunfishcode/wasm-reference-manual/blob/master/WebAssembly.md#floating-point-comparison-instructions ***************************/ Operator::F32Eq | Operator::F64Eq => { let (v1, v2) = self.state.pop2()?; let (v1, v2) = (v1.into_float_value(), v2.into_float_value()); let cond = self .builder .build_float_compare(FloatPredicate::OEQ, v1, v2, ""); let res = self .builder .build_int_z_extend(cond, self.intrinsics.i32_ty, ""); self.state.push1_extra( res, ExtraInfo::arithmetic_f32() | ExtraInfo::arithmetic_f64(), ); } Operator::F32x4Eq => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_f32x4(v1, i1); let (v2, _) = self.v128_into_f32x4(v2, i2); let res = self .builder .build_float_compare(FloatPredicate::OEQ, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i32x4_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::F64x2Eq => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_f64x2(v1, i1); let (v2, _) = self.v128_into_f64x2(v2, i2); let res = self .builder .build_float_compare(FloatPredicate::OEQ, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i64x2_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::F32Ne | Operator::F64Ne => { let (v1, v2) = self.state.pop2()?; let (v1, v2) = (v1.into_float_value(), v2.into_float_value()); let cond = self .builder .build_float_compare(FloatPredicate::UNE, v1, v2, ""); let res = self .builder .build_int_z_extend(cond, self.intrinsics.i32_ty, ""); self.state.push1_extra( res, ExtraInfo::arithmetic_f32() | ExtraInfo::arithmetic_f64(), ); } Operator::F32x4Ne => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_f32x4(v1, i1); let (v2, _) = self.v128_into_f32x4(v2, i2); let res = self .builder .build_float_compare(FloatPredicate::UNE, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i32x4_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::F64x2Ne => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_f64x2(v1, i1); let (v2, _) = self.v128_into_f64x2(v2, i2); let res = self .builder .build_float_compare(FloatPredicate::UNE, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i64x2_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::F32Lt | Operator::F64Lt => { let (v1, v2) = self.state.pop2()?; let (v1, v2) = (v1.into_float_value(), v2.into_float_value()); let cond = self .builder .build_float_compare(FloatPredicate::OLT, v1, v2, ""); let res = self .builder .build_int_z_extend(cond, self.intrinsics.i32_ty, ""); self.state.push1_extra( res, ExtraInfo::arithmetic_f32() | ExtraInfo::arithmetic_f64(), ); } Operator::F32x4Lt => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_f32x4(v1, i1); let (v2, _) = self.v128_into_f32x4(v2, i2); let res = self .builder .build_float_compare(FloatPredicate::OLT, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i32x4_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::F64x2Lt => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_f64x2(v1, i1); let (v2, _) = self.v128_into_f64x2(v2, i2); let res = self .builder .build_float_compare(FloatPredicate::OLT, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i64x2_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::F32Le | Operator::F64Le => { let (v1, v2) = self.state.pop2()?; let (v1, v2) = (v1.into_float_value(), v2.into_float_value()); let cond = self .builder .build_float_compare(FloatPredicate::OLE, v1, v2, ""); let res = self .builder .build_int_z_extend(cond, self.intrinsics.i32_ty, ""); self.state.push1_extra( res, ExtraInfo::arithmetic_f32() | ExtraInfo::arithmetic_f64(), ); } Operator::F32x4Le => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_f32x4(v1, i1); let (v2, _) = self.v128_into_f32x4(v2, i2); let res = self .builder .build_float_compare(FloatPredicate::OLE, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i32x4_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::F64x2Le => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_f64x2(v1, i1); let (v2, _) = self.v128_into_f64x2(v2, i2); let res = self .builder .build_float_compare(FloatPredicate::OLE, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i64x2_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::F32Gt | Operator::F64Gt => { let (v1, v2) = self.state.pop2()?; let (v1, v2) = (v1.into_float_value(), v2.into_float_value()); let cond = self .builder .build_float_compare(FloatPredicate::OGT, v1, v2, ""); let res = self .builder .build_int_z_extend(cond, self.intrinsics.i32_ty, ""); self.state.push1_extra( res, ExtraInfo::arithmetic_f32() | ExtraInfo::arithmetic_f64(), ); } Operator::F32x4Gt => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_f32x4(v1, i1); let (v2, _) = self.v128_into_f32x4(v2, i2); let res = self .builder .build_float_compare(FloatPredicate::OGT, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i32x4_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::F64x2Gt => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_f64x2(v1, i1); let (v2, _) = self.v128_into_f64x2(v2, i2); let res = self .builder .build_float_compare(FloatPredicate::OGT, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i64x2_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::F32Ge | Operator::F64Ge => { let (v1, v2) = self.state.pop2()?; let (v1, v2) = (v1.into_float_value(), v2.into_float_value()); let cond = self .builder .build_float_compare(FloatPredicate::OGE, v1, v2, ""); let res = self .builder .build_int_z_extend(cond, self.intrinsics.i32_ty, ""); self.state.push1_extra( res, ExtraInfo::arithmetic_f32() | ExtraInfo::arithmetic_f64(), ); } Operator::F32x4Ge => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_f32x4(v1, i1); let (v2, _) = self.v128_into_f32x4(v2, i2); let res = self .builder .build_float_compare(FloatPredicate::OGE, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i32x4_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::F64x2Ge => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_f64x2(v1, i1); let (v2, _) = self.v128_into_f64x2(v2, i2); let res = self .builder .build_float_compare(FloatPredicate::OGE, v1, v2, ""); let res = self .builder .build_int_s_extend(res, self.intrinsics.i64x2_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } /*************************** * Conversion instructions. * https://github.com/sunfishcode/wasm-reference-manual/blob/master/WebAssembly.md#conversion-instructions ***************************/ Operator::I32WrapI64 => { let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i); let v = v.into_int_value(); let res = self .builder .build_int_truncate(v, self.intrinsics.i32_ty, ""); self.state.push1(res); } Operator::I64ExtendI32S => { let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i); let v = v.into_int_value(); let res = self .builder .build_int_s_extend(v, self.intrinsics.i64_ty, ""); self.state.push1(res); } Operator::I64ExtendI32U => { let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i); let v = v.into_int_value(); let res = self .builder .build_int_z_extend(v, self.intrinsics.i64_ty, ""); self.state.push1_extra(res, ExtraInfo::arithmetic_f64()); } Operator::I32x4TruncSatF32x4S => { let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i); let v = v.into_int_value(); let res = self.trunc_sat( self.intrinsics.f32x4_ty, self.intrinsics.i32x4_ty, -2147480000i32 as u32 as u64, 2147480000, std::i32::MIN as u64, std::i32::MAX as u64, v, ); self.state.push1(res); } Operator::I32x4TruncSatF32x4U => { let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i); let v = v.into_int_value(); let res = self.trunc_sat( self.intrinsics.f32x4_ty, self.intrinsics.i32x4_ty, 0, 4294960000, std::u32::MIN as u64, std::u32::MAX as u64, v, ); self.state.push1(res); } Operator::I64x2TruncSatF64x2S => { let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i); let v = v.into_int_value(); let res = self.trunc_sat( self.intrinsics.f64x2_ty, self.intrinsics.i64x2_ty, std::i64::MIN as u64, std::i64::MAX as u64, std::i64::MIN as u64, std::i64::MAX as u64, v, ); self.state.push1(res); } Operator::I64x2TruncSatF64x2U => { let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i); let v = v.into_int_value(); let res = self.trunc_sat( self.intrinsics.f64x2_ty, self.intrinsics.i64x2_ty, std::u64::MIN, std::u64::MAX, std::u64::MIN, std::u64::MAX, v, ); self.state.push1(res); } Operator::I32TruncF32S => { let v1 = self.state.pop1()?.into_float_value(); self.trap_if_not_representable_as_int( 0xcf000000, // -2147483600.0 0x4effffff, // 2147483500.0 v1, ); let res = self .builder .build_float_to_signed_int(v1, self.intrinsics.i32_ty, ""); self.state.push1(res); } Operator::I32TruncF64S => { let v1 = self.state.pop1()?.into_float_value(); self.trap_if_not_representable_as_int( 0xc1e00000001fffff, // -2147483648.9999995 0x41dfffffffffffff, // 2147483647.9999998 v1, ); let res = self .builder .build_float_to_signed_int(v1, self.intrinsics.i32_ty, ""); self.state.push1(res); } Operator::I32TruncSatF32S => { let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i); let v = v.into_float_value(); let res = self.trunc_sat_scalar( self.intrinsics.i32_ty, LEF32_GEQ_I32_MIN, GEF32_LEQ_I32_MAX, std::i32::MIN as u32 as u64, std::i32::MAX as u32 as u64, v, ); self.state.push1(res); } Operator::I32TruncSatF64S => { let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i); let v = v.into_float_value(); let res = self.trunc_sat_scalar( self.intrinsics.i32_ty, LEF64_GEQ_I32_MIN, GEF64_LEQ_I32_MAX, std::i32::MIN as u64, std::i32::MAX as u64, v, ); self.state.push1(res); } Operator::I64TruncF32S => { let v1 = self.state.pop1()?.into_float_value(); self.trap_if_not_representable_as_int( 0xdf000000, // -9223372000000000000.0 0x5effffff, // 9223371500000000000.0 v1, ); let res = self .builder .build_float_to_signed_int(v1, self.intrinsics.i64_ty, ""); self.state.push1(res); } Operator::I64TruncF64S => { let v1 = self.state.pop1()?.into_float_value(); self.trap_if_not_representable_as_int( 0xc3e0000000000000, // -9223372036854776000.0 0x43dfffffffffffff, // 9223372036854775000.0 v1, ); let res = self .builder .build_float_to_signed_int(v1, self.intrinsics.i64_ty, ""); self.state.push1(res); } Operator::I64TruncSatF32S => { let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i); let v = v.into_float_value(); let res = self.trunc_sat_scalar( self.intrinsics.i64_ty, LEF32_GEQ_I64_MIN, GEF32_LEQ_I64_MAX, std::i64::MIN as u64, std::i64::MAX as u64, v, ); self.state.push1(res); } Operator::I64TruncSatF64S => { let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i); let v = v.into_float_value(); let res = self.trunc_sat_scalar( self.intrinsics.i64_ty, LEF64_GEQ_I64_MIN, GEF64_LEQ_I64_MAX, std::i64::MIN as u64, std::i64::MAX as u64, v, ); self.state.push1(res); } Operator::I32TruncF32U => { let v1 = self.state.pop1()?.into_float_value(); self.trap_if_not_representable_as_int( 0xbf7fffff, // -0.99999994 0x4f7fffff, // 4294967000.0 v1, ); let res = self .builder .build_float_to_unsigned_int(v1, self.intrinsics.i32_ty, ""); self.state.push1(res); } Operator::I32TruncF64U => { let v1 = self.state.pop1()?.into_float_value(); self.trap_if_not_representable_as_int( 0xbfefffffffffffff, // -0.9999999999999999 0x41efffffffffffff, // 4294967295.9999995 v1, ); let res = self .builder .build_float_to_unsigned_int(v1, self.intrinsics.i32_ty, ""); self.state.push1(res); } Operator::I32TruncSatF32U => { let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i); let v = v.into_float_value(); let res = self.trunc_sat_scalar( self.intrinsics.i32_ty, LEF32_GEQ_U32_MIN, GEF32_LEQ_U32_MAX, std::u32::MIN as u64, std::u32::MAX as u64, v, ); self.state.push1(res); } Operator::I32TruncSatF64U => { let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i); let v = v.into_float_value(); let res = self.trunc_sat_scalar( self.intrinsics.i32_ty, LEF64_GEQ_U32_MIN, GEF64_LEQ_U32_MAX, std::u32::MIN as u64, std::u32::MAX as u64, v, ); self.state.push1(res); } Operator::I64TruncF32U => { let v1 = self.state.pop1()?.into_float_value(); self.trap_if_not_representable_as_int( 0xbf7fffff, // -0.99999994 0x5f7fffff, // 18446743000000000000.0 v1, ); let res = self .builder .build_float_to_unsigned_int(v1, self.intrinsics.i64_ty, ""); self.state.push1(res); } Operator::I64TruncF64U => { let v1 = self.state.pop1()?.into_float_value(); self.trap_if_not_representable_as_int( 0xbfefffffffffffff, // -0.9999999999999999 0x43efffffffffffff, // 18446744073709550000.0 v1, ); let res = self .builder .build_float_to_unsigned_int(v1, self.intrinsics.i64_ty, ""); self.state.push1(res); } Operator::I64TruncSatF32U => { let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i); let v = v.into_float_value(); let res = self.trunc_sat_scalar( self.intrinsics.i64_ty, LEF32_GEQ_U64_MIN, GEF32_LEQ_U64_MAX, std::u64::MIN, std::u64::MAX, v, ); self.state.push1(res); } Operator::I64TruncSatF64U => { let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i); let v = v.into_float_value(); let res = self.trunc_sat_scalar( self.intrinsics.i64_ty, LEF64_GEQ_U64_MIN, GEF64_LEQ_U64_MAX, std::u64::MIN, std::u64::MAX, v, ); self.state.push1(res); } Operator::F32DemoteF64 => { let v = self.state.pop1()?; let v = v.into_float_value(); let res = self .builder .build_float_trunc(v, self.intrinsics.f32_ty, ""); self.state.push1_extra(res, ExtraInfo::pending_f32_nan()); } Operator::F64PromoteF32 => { let v = self.state.pop1()?; let v = v.into_float_value(); let res = self.builder.build_float_ext(v, self.intrinsics.f64_ty, ""); self.state.push1_extra(res, ExtraInfo::pending_f64_nan()); } Operator::F32ConvertI32S | Operator::F32ConvertI64S => { let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i); let v = v.into_int_value(); let res = self .builder .build_signed_int_to_float(v, self.intrinsics.f32_ty, ""); self.state.push1(res); } Operator::F64ConvertI32S | Operator::F64ConvertI64S => { let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i); let v = v.into_int_value(); let res = self .builder .build_signed_int_to_float(v, self.intrinsics.f64_ty, ""); self.state.push1(res); } Operator::F32ConvertI32U | Operator::F32ConvertI64U => { let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i); let v = v.into_int_value(); let res = self .builder .build_unsigned_int_to_float(v, self.intrinsics.f32_ty, ""); self.state.push1(res); } Operator::F64ConvertI32U | Operator::F64ConvertI64U => { let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i); let v = v.into_int_value(); let res = self .builder .build_unsigned_int_to_float(v, self.intrinsics.f64_ty, ""); self.state.push1(res); } Operator::F32x4ConvertI32x4S => { let v = self.state.pop1()?; let v = self .builder .build_bitcast(v, self.intrinsics.i32x4_ty, "") .into_vector_value(); let res = self .builder .build_signed_int_to_float(v, self.intrinsics.f32x4_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::F32x4ConvertI32x4U => { let v = self.state.pop1()?; let v = self .builder .build_bitcast(v, self.intrinsics.i32x4_ty, "") .into_vector_value(); let res = self .builder .build_unsigned_int_to_float(v, self.intrinsics.f32x4_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::F64x2ConvertI64x2S => { let v = self.state.pop1()?; let v = self .builder .build_bitcast(v, self.intrinsics.i64x2_ty, "") .into_vector_value(); let res = self .builder .build_signed_int_to_float(v, self.intrinsics.f64x2_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::F64x2ConvertI64x2U => { let v = self.state.pop1()?; let v = self .builder .build_bitcast(v, self.intrinsics.i64x2_ty, "") .into_vector_value(); let res = self .builder .build_unsigned_int_to_float(v, self.intrinsics.f64x2_ty, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32ReinterpretF32 => { let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i); let ret = self.builder.build_bitcast(v, self.intrinsics.i32_ty, ""); self.state.push1_extra(ret, ExtraInfo::arithmetic_f32()); } Operator::I64ReinterpretF64 => { let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i); let ret = self.builder.build_bitcast(v, self.intrinsics.i64_ty, ""); self.state.push1_extra(ret, ExtraInfo::arithmetic_f64()); } Operator::F32ReinterpretI32 => { let (v, i) = self.state.pop1_extra()?; let ret = self.builder.build_bitcast(v, self.intrinsics.f32_ty, ""); self.state.push1_extra(ret, i); } Operator::F64ReinterpretI64 => { let (v, i) = self.state.pop1_extra()?; let ret = self.builder.build_bitcast(v, self.intrinsics.f64_ty, ""); self.state.push1_extra(ret, i); } /*************************** * Sign-extension operators. * https://github.com/WebAssembly/sign-extension-ops/blob/master/proposals/sign-extension-ops/Overview.md ***************************/ Operator::I32Extend8S => { let value = self.state.pop1()?.into_int_value(); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i8_ty, ""); let extended_value = self.builder .build_int_s_extend(narrow_value, self.intrinsics.i32_ty, ""); self.state.push1(extended_value); } Operator::I32Extend16S => { let value = self.state.pop1()?.into_int_value(); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i16_ty, ""); let extended_value = self.builder .build_int_s_extend(narrow_value, self.intrinsics.i32_ty, ""); self.state.push1(extended_value); } Operator::I64Extend8S => { let value = self.state.pop1()?.into_int_value(); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i8_ty, ""); let extended_value = self.builder .build_int_s_extend(narrow_value, self.intrinsics.i64_ty, ""); self.state.push1(extended_value); } Operator::I64Extend16S => { let value = self.state.pop1()?.into_int_value(); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i16_ty, ""); let extended_value = self.builder .build_int_s_extend(narrow_value, self.intrinsics.i64_ty, ""); self.state.push1(extended_value); } Operator::I64Extend32S => { let value = self.state.pop1()?.into_int_value(); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i32_ty, ""); let extended_value = self.builder .build_int_s_extend(narrow_value, self.intrinsics.i64_ty, ""); self.state.push1(extended_value); } /*************************** * Load and Store instructions. * https://github.com/sunfishcode/wasm-reference-manual/blob/master/WebAssembly.md#load-and-store-instructions ***************************/ Operator::I32Load { ref memarg } => { let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i32_ptr_ty, offset, 4, )?; let result = self.builder.build_load(effective_address, ""); self.annotate_user_memaccess( memory_index, memarg, 1, result.as_instruction_value().unwrap(), )?; self.state.push1(result); } Operator::I64Load { ref memarg } => { let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i64_ptr_ty, offset, 8, )?; let result = self.builder.build_load(effective_address, ""); self.annotate_user_memaccess( memory_index, memarg, 1, result.as_instruction_value().unwrap(), )?; self.state.push1(result); } Operator::F32Load { ref memarg } => { let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.f32_ptr_ty, offset, 4, )?; let result = self.builder.build_load(effective_address, ""); self.annotate_user_memaccess( memory_index, memarg, 1, result.as_instruction_value().unwrap(), )?; self.state.push1(result); } Operator::F64Load { ref memarg } => { let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.f64_ptr_ty, offset, 8, )?; let result = self.builder.build_load(effective_address, ""); self.annotate_user_memaccess( memory_index, memarg, 1, result.as_instruction_value().unwrap(), )?; self.state.push1(result); } Operator::V128Load { ref memarg } => { let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i128_ptr_ty, offset, 16, )?; let result = self.builder.build_load(effective_address, ""); self.annotate_user_memaccess( memory_index, memarg, 1, result.as_instruction_value().unwrap(), )?; self.state.push1(result); } Operator::I32Store { ref memarg } => { let value = self.state.pop1()?; let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i32_ptr_ty, offset, 4, )?; let store = self.builder.build_store(effective_address, value); self.annotate_user_memaccess(memory_index, memarg, 1, store)?; } Operator::I64Store { ref memarg } => { let value = self.state.pop1()?; let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i64_ptr_ty, offset, 8, )?; let store = self.builder.build_store(effective_address, value); self.annotate_user_memaccess(memory_index, memarg, 1, store)?; } Operator::F32Store { ref memarg } => { let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.f32_ptr_ty, offset, 4, )?; let store = self.builder.build_store(effective_address, v); self.annotate_user_memaccess(memory_index, memarg, 1, store)?; } Operator::F64Store { ref memarg } => { let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.f64_ptr_ty, offset, 8, )?; let store = self.builder.build_store(effective_address, v); self.annotate_user_memaccess(memory_index, memarg, 1, store)?; } Operator::V128Store { ref memarg } => { let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i128_ptr_ty, offset, 16, )?; let store = self.builder.build_store(effective_address, v); self.annotate_user_memaccess(memory_index, memarg, 1, store)?; } Operator::I32Load8S { ref memarg } => { let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i8_ptr_ty, offset, 1, )?; let narrow_result = self.builder.build_load(effective_address, ""); self.annotate_user_memaccess( memory_index, memarg, 1, narrow_result.as_instruction_value().unwrap(), )?; let result = self.builder.build_int_s_extend( narrow_result.into_int_value(), self.intrinsics.i32_ty, "", ); self.state.push1(result); } Operator::I32Load16S { ref memarg } => { let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i16_ptr_ty, offset, 2, )?; let narrow_result = self.builder.build_load(effective_address, ""); self.annotate_user_memaccess( memory_index, memarg, 1, narrow_result.as_instruction_value().unwrap(), )?; let result = self.builder.build_int_s_extend( narrow_result.into_int_value(), self.intrinsics.i32_ty, "", ); self.state.push1(result); } Operator::I64Load8S { ref memarg } => { let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i8_ptr_ty, offset, 1, )?; let narrow_result = self .builder .build_load(effective_address, "") .into_int_value(); self.annotate_user_memaccess( memory_index, memarg, 1, narrow_result.as_instruction_value().unwrap(), )?; let result = self.builder .build_int_s_extend(narrow_result, self.intrinsics.i64_ty, ""); self.state.push1(result); } Operator::I64Load16S { ref memarg } => { let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i16_ptr_ty, offset, 2, )?; let narrow_result = self .builder .build_load(effective_address, "") .into_int_value(); self.annotate_user_memaccess( memory_index, memarg, 1, narrow_result.as_instruction_value().unwrap(), )?; let result = self.builder .build_int_s_extend(narrow_result, self.intrinsics.i64_ty, ""); self.state.push1(result); } Operator::I64Load32S { ref memarg } => { let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i32_ptr_ty, offset, 4, )?; let narrow_result = self.builder.build_load(effective_address, ""); self.annotate_user_memaccess( memory_index, memarg, 1, narrow_result.as_instruction_value().unwrap(), )?; let result = self.builder.build_int_s_extend( narrow_result.into_int_value(), self.intrinsics.i64_ty, "", ); self.state.push1(result); } Operator::I32Load8U { ref memarg } => { let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i8_ptr_ty, offset, 1, )?; let narrow_result = self.builder.build_load(effective_address, ""); self.annotate_user_memaccess( memory_index, memarg, 1, narrow_result.as_instruction_value().unwrap(), )?; let result = self.builder.build_int_z_extend( narrow_result.into_int_value(), self.intrinsics.i32_ty, "", ); self.state.push1_extra(result, ExtraInfo::arithmetic_f32()); } Operator::I32Load16U { ref memarg } => { let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i16_ptr_ty, offset, 2, )?; let narrow_result = self.builder.build_load(effective_address, ""); self.annotate_user_memaccess( memory_index, memarg, 1, narrow_result.as_instruction_value().unwrap(), )?; let result = self.builder.build_int_z_extend( narrow_result.into_int_value(), self.intrinsics.i32_ty, "", ); self.state.push1_extra(result, ExtraInfo::arithmetic_f32()); } Operator::I64Load8U { ref memarg } => { let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i8_ptr_ty, offset, 1, )?; let narrow_result = self.builder.build_load(effective_address, ""); self.annotate_user_memaccess( memory_index, memarg, 1, narrow_result.as_instruction_value().unwrap(), )?; let result = self.builder.build_int_z_extend( narrow_result.into_int_value(), self.intrinsics.i64_ty, "", ); self.state.push1_extra(result, ExtraInfo::arithmetic_f64()); } Operator::I64Load16U { ref memarg } => { let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i16_ptr_ty, offset, 2, )?; let narrow_result = self.builder.build_load(effective_address, ""); self.annotate_user_memaccess( memory_index, memarg, 1, narrow_result.as_instruction_value().unwrap(), )?; let result = self.builder.build_int_z_extend( narrow_result.into_int_value(), self.intrinsics.i64_ty, "", ); self.state.push1_extra(result, ExtraInfo::arithmetic_f64()); } Operator::I64Load32U { ref memarg } => { let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i32_ptr_ty, offset, 4, )?; let narrow_result = self.builder.build_load(effective_address, ""); self.annotate_user_memaccess( memory_index, memarg, 1, narrow_result.as_instruction_value().unwrap(), )?; let result = self.builder.build_int_z_extend( narrow_result.into_int_value(), self.intrinsics.i64_ty, "", ); self.state.push1_extra(result, ExtraInfo::arithmetic_f64()); } Operator::I32Store8 { ref memarg } | Operator::I64Store8 { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i8_ptr_ty, offset, 1, )?; let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i8_ty, ""); let store = self.builder.build_store(effective_address, narrow_value); self.annotate_user_memaccess(memory_index, memarg, 1, store)?; } Operator::I32Store16 { ref memarg } | Operator::I64Store16 { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i16_ptr_ty, offset, 2, )?; let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i16_ty, ""); let store = self.builder.build_store(effective_address, narrow_value); self.annotate_user_memaccess(memory_index, memarg, 1, store)?; } Operator::I64Store32 { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i32_ptr_ty, offset, 4, )?; let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i32_ty, ""); let store = self.builder.build_store(effective_address, narrow_value); self.annotate_user_memaccess(memory_index, memarg, 1, store)?; } Operator::I8x16Neg => { let (v, i) = self.state.pop1_extra()?; let (v, _) = self.v128_into_i8x16(v, i); let res = self.builder.build_int_sub(v.get_type().const_zero(), v, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I16x8Neg => { let (v, i) = self.state.pop1_extra()?; let (v, _) = self.v128_into_i16x8(v, i); let res = self.builder.build_int_sub(v.get_type().const_zero(), v, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32x4Neg => { let (v, i) = self.state.pop1_extra()?; let (v, _) = self.v128_into_i32x4(v, i); let res = self.builder.build_int_sub(v.get_type().const_zero(), v, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I64x2Neg => { let (v, i) = self.state.pop1_extra()?; let (v, _) = self.v128_into_i64x2(v, i); let res = self.builder.build_int_sub(v.get_type().const_zero(), v, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::V128Not => { let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i).into_int_value(); let res = self.builder.build_not(v, ""); self.state.push1(res); } Operator::I8x16AnyTrue | Operator::I16x8AnyTrue | Operator::I32x4AnyTrue | Operator::I64x2AnyTrue => { // Skip canonicalization, it never changes non-zero values to zero or vice versa. let v = self.state.pop1()?.into_int_value(); let res = self.builder.build_int_compare( IntPredicate::NE, v, v.get_type().const_zero(), "", ); let res = self .builder .build_int_z_extend(res, self.intrinsics.i32_ty, ""); self.state.push1_extra( res, ExtraInfo::arithmetic_f32() | ExtraInfo::arithmetic_f64(), ); } Operator::I8x16AllTrue | Operator::I16x8AllTrue | Operator::I32x4AllTrue | Operator::I64x2AllTrue => { let vec_ty = match op { Operator::I8x16AllTrue => self.intrinsics.i8x16_ty, Operator::I16x8AllTrue => self.intrinsics.i16x8_ty, Operator::I32x4AllTrue => self.intrinsics.i32x4_ty, Operator::I64x2AllTrue => self.intrinsics.i64x2_ty, _ => unreachable!(), }; let (v, i) = self.state.pop1_extra()?; let v = self.apply_pending_canonicalization(v, i).into_int_value(); let lane_int_ty = self.context.custom_width_int_type(vec_ty.get_size()); let vec = self .builder .build_bitcast(v, vec_ty, "vec") .into_vector_value(); let mask = self.builder.build_int_compare( IntPredicate::NE, vec, vec_ty.const_zero(), "mask", ); let cmask = self .builder .build_bitcast(mask, lane_int_ty, "cmask") .into_int_value(); let res = self.builder.build_int_compare( IntPredicate::EQ, cmask, lane_int_ty.const_int(std::u64::MAX, true), "", ); let res = self .builder .build_int_z_extend(res, self.intrinsics.i32_ty, ""); self.state.push1_extra( res, ExtraInfo::arithmetic_f32() | ExtraInfo::arithmetic_f64(), ); } Operator::I8x16ExtractLaneS { lane } => { let (v, i) = self.state.pop1_extra()?; let (v, _) = self.v128_into_i8x16(v, i); let idx = self.intrinsics.i32_ty.const_int(lane.into(), false); let res = self .builder .build_extract_element(v, idx, "") .into_int_value(); let res = self .builder .build_int_s_extend(res, self.intrinsics.i32_ty, ""); self.state.push1(res); } Operator::I8x16ExtractLaneU { lane } => { let (v, i) = self.state.pop1_extra()?; let (v, _) = self.v128_into_i8x16(v, i); let idx = self.intrinsics.i32_ty.const_int(lane.into(), false); let res = self .builder .build_extract_element(v, idx, "") .into_int_value(); let res = self .builder .build_int_z_extend(res, self.intrinsics.i32_ty, ""); self.state.push1_extra(res, ExtraInfo::arithmetic_f32()); } Operator::I16x8ExtractLaneS { lane } => { let (v, i) = self.state.pop1_extra()?; let (v, _) = self.v128_into_i16x8(v, i); let idx = self.intrinsics.i32_ty.const_int(lane.into(), false); let res = self .builder .build_extract_element(v, idx, "") .into_int_value(); let res = self .builder .build_int_s_extend(res, self.intrinsics.i32_ty, ""); self.state.push1(res); } Operator::I16x8ExtractLaneU { lane } => { let (v, i) = self.state.pop1_extra()?; let (v, _) = self.v128_into_i16x8(v, i); let idx = self.intrinsics.i32_ty.const_int(lane.into(), false); let res = self .builder .build_extract_element(v, idx, "") .into_int_value(); let res = self .builder .build_int_z_extend(res, self.intrinsics.i32_ty, ""); self.state.push1_extra(res, ExtraInfo::arithmetic_f32()); } Operator::I32x4ExtractLane { lane } => { let (v, i) = self.state.pop1_extra()?; let (v, i) = self.v128_into_i32x4(v, i); let idx = self.intrinsics.i32_ty.const_int(lane.into(), false); let res = self.builder.build_extract_element(v, idx, ""); self.state.push1_extra(res, i); } Operator::I64x2ExtractLane { lane } => { let (v, i) = self.state.pop1_extra()?; let (v, i) = self.v128_into_i64x2(v, i); let idx = self.intrinsics.i32_ty.const_int(lane.into(), false); let res = self.builder.build_extract_element(v, idx, ""); self.state.push1_extra(res, i); } Operator::F32x4ExtractLane { lane } => { let (v, i) = self.state.pop1_extra()?; let (v, i) = self.v128_into_f32x4(v, i); let idx = self.intrinsics.i32_ty.const_int(lane.into(), false); let res = self.builder.build_extract_element(v, idx, ""); self.state.push1_extra(res, i); } Operator::F64x2ExtractLane { lane } => { let (v, i) = self.state.pop1_extra()?; let (v, i) = self.v128_into_f64x2(v, i); let idx = self.intrinsics.i32_ty.const_int(lane.into(), false); let res = self.builder.build_extract_element(v, idx, ""); self.state.push1_extra(res, i); } Operator::I8x16ReplaceLane { lane } => { let ((v1, i1), (v2, _)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i8x16(v1, i1); let v2 = v2.into_int_value(); let v2 = self.builder.build_int_cast(v2, self.intrinsics.i8_ty, ""); let idx = self.intrinsics.i32_ty.const_int(lane.into(), false); let res = self.builder.build_insert_element(v1, v2, idx, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I16x8ReplaceLane { lane } => { let ((v1, i1), (v2, _)) = self.state.pop2_extra()?; let (v1, _) = self.v128_into_i16x8(v1, i1); let v2 = v2.into_int_value(); let v2 = self.builder.build_int_cast(v2, self.intrinsics.i16_ty, ""); let idx = self.intrinsics.i32_ty.const_int(lane.into(), false); let res = self.builder.build_insert_element(v1, v2, idx, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::I32x4ReplaceLane { lane } => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, i1) = self.v128_into_i32x4(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let v2 = v2.into_int_value(); let i2 = i2.strip_pending(); let idx = self.intrinsics.i32_ty.const_int(lane.into(), false); let res = self.builder.build_insert_element(v1, v2, idx, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state .push1_extra(res, i1 & i2 & ExtraInfo::arithmetic_f32()); } Operator::I64x2ReplaceLane { lane } => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, i1) = self.v128_into_i64x2(v1, i1); let v2 = self.apply_pending_canonicalization(v2, i2); let v2 = v2.into_int_value(); let i2 = i2.strip_pending(); let idx = self.intrinsics.i32_ty.const_int(lane.into(), false); let res = self.builder.build_insert_element(v1, v2, idx, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state .push1_extra(res, i1 & i2 & ExtraInfo::arithmetic_f64()); } Operator::F32x4ReplaceLane { lane } => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, i1) = self.v128_into_f32x4(v1, i1); let push_pending_f32_nan_to_result = i1.has_pending_f32_nan() && i2.has_pending_f32_nan(); let (v1, v2) = if !push_pending_f32_nan_to_result { ( self.apply_pending_canonicalization(v1.as_basic_value_enum(), i1) .into_vector_value(), self.apply_pending_canonicalization(v2.as_basic_value_enum(), i2) .into_float_value(), ) } else { (v1, v2.into_float_value()) }; let idx = self.intrinsics.i32_ty.const_int(lane.into(), false); let res = self.builder.build_insert_element(v1, v2, idx, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); let info = if push_pending_f32_nan_to_result { ExtraInfo::pending_f32_nan() } else { i1.strip_pending() & i2.strip_pending() }; self.state.push1_extra(res, info); } Operator::F64x2ReplaceLane { lane } => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let (v1, i1) = self.v128_into_f64x2(v1, i1); let push_pending_f64_nan_to_result = i1.has_pending_f64_nan() && i2.has_pending_f64_nan(); let (v1, v2) = if !push_pending_f64_nan_to_result { ( self.apply_pending_canonicalization(v1.as_basic_value_enum(), i1) .into_vector_value(), self.apply_pending_canonicalization(v2.as_basic_value_enum(), i2) .into_float_value(), ) } else { (v1, v2.into_float_value()) }; let idx = self.intrinsics.i32_ty.const_int(lane.into(), false); let res = self.builder.build_insert_element(v1, v2, idx, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); let info = if push_pending_f64_nan_to_result { ExtraInfo::pending_f64_nan() } else { i1.strip_pending() & i2.strip_pending() }; self.state.push1_extra(res, info); } Operator::V8x16Swizzle => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v1 = self .builder .build_bitcast(v1, self.intrinsics.i8x16_ty, "") .into_vector_value(); let v2 = self.apply_pending_canonicalization(v2, i2); let v2 = self .builder .build_bitcast(v2, self.intrinsics.i8x16_ty, "") .into_vector_value(); let lanes = self.intrinsics.i8_ty.const_int(16, false); let lanes = self.splat_vector(lanes.as_basic_value_enum(), self.intrinsics.i8x16_ty); let mut res = self.intrinsics.i8x16_ty.get_undef(); let idx_out_of_range = self.builder.build_int_compare( IntPredicate::UGE, v2, lanes, "idx_out_of_range", ); let idx_clamped = self .builder .build_select( idx_out_of_range, self.intrinsics.i8x16_ty.const_zero(), v2, "idx_clamped", ) .into_vector_value(); for i in 0..16 { let idx = self .builder .build_extract_element( idx_clamped, self.intrinsics.i32_ty.const_int(i, false), "idx", ) .into_int_value(); let replace_with_zero = self .builder .build_extract_element( idx_out_of_range, self.intrinsics.i32_ty.const_int(i, false), "replace_with_zero", ) .into_int_value(); let elem = self .builder .build_extract_element(v1, idx, "elem") .into_int_value(); let elem_or_zero = self.builder.build_select( replace_with_zero, self.intrinsics.i8_zero, elem, "elem_or_zero", ); res = self.builder.build_insert_element( res, elem_or_zero, self.intrinsics.i32_ty.const_int(i, false), "", ); } let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::V8x16Shuffle { lanes } => { let ((v1, i1), (v2, i2)) = self.state.pop2_extra()?; let v1 = self.apply_pending_canonicalization(v1, i1); let v1 = self .builder .build_bitcast(v1, self.intrinsics.i8x16_ty, "") .into_vector_value(); let v2 = self.apply_pending_canonicalization(v2, i2); let v2 = self .builder .build_bitcast(v2, self.intrinsics.i8x16_ty, "") .into_vector_value(); let mask = VectorType::const_vector( lanes .iter() .map(|l| self.intrinsics.i32_ty.const_int((*l).into(), false)) .collect::>() .as_slice(), ); let res = self.builder.build_shuffle_vector(v1, v2, mask, ""); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::V8x16LoadSplat { ref memarg } => { let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i8_ptr_ty, offset, 1, )?; let elem = self.builder.build_load(effective_address, ""); self.annotate_user_memaccess( memory_index, memarg, 1, elem.as_instruction_value().unwrap(), )?; let res = self.splat_vector(elem, self.intrinsics.i8x16_ty); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::V16x8LoadSplat { ref memarg } => { let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i16_ptr_ty, offset, 2, )?; let elem = self.builder.build_load(effective_address, ""); self.annotate_user_memaccess( memory_index, memarg, 1, elem.as_instruction_value().unwrap(), )?; let res = self.splat_vector(elem, self.intrinsics.i16x8_ty); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::V32x4LoadSplat { ref memarg } => { let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i32_ptr_ty, offset, 4, )?; let elem = self.builder.build_load(effective_address, ""); self.annotate_user_memaccess( memory_index, memarg, 1, elem.as_instruction_value().unwrap(), )?; let res = self.splat_vector(elem, self.intrinsics.i32x4_ty); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::V64x2LoadSplat { ref memarg } => { let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i64_ptr_ty, offset, 8, )?; let elem = self.builder.build_load(effective_address, ""); self.annotate_user_memaccess( memory_index, memarg, 1, elem.as_instruction_value().unwrap(), )?; let res = self.splat_vector(elem, self.intrinsics.i64x2_ty); let res = self.builder.build_bitcast(res, self.intrinsics.i128_ty, ""); self.state.push1(res); } Operator::AtomicFence { flags: _ } => { // Fence is a nop. // // Fence was added to preserve information about fences from // source languages. If in the future Wasm extends the memory // model, and if we hadn't recorded what fences used to be there, // it would lead to data races that weren't present in the // original source language. } Operator::I32AtomicLoad { ref memarg } => { let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i32_ptr_ty, offset, 4, )?; self.trap_if_misaligned(memarg, effective_address); let result = self.builder.build_load(effective_address, ""); let load = result.as_instruction_value().unwrap(); self.annotate_user_memaccess(memory_index, memarg, 4, load)?; load.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent) .unwrap(); self.state.push1(result); } Operator::I64AtomicLoad { ref memarg } => { let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i64_ptr_ty, offset, 8, )?; self.trap_if_misaligned(memarg, effective_address); let result = self.builder.build_load(effective_address, ""); let load = result.as_instruction_value().unwrap(); self.annotate_user_memaccess(memory_index, memarg, 8, load)?; load.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent) .unwrap(); self.state.push1(result); } Operator::I32AtomicLoad8U { ref memarg } => { let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i8_ptr_ty, offset, 1, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_result = self .builder .build_load(effective_address, "") .into_int_value(); let load = narrow_result.as_instruction_value().unwrap(); self.annotate_user_memaccess(memory_index, memarg, 1, load)?; load.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent) .unwrap(); let result = self.builder .build_int_z_extend(narrow_result, self.intrinsics.i32_ty, ""); self.state.push1_extra(result, ExtraInfo::arithmetic_f32()); } Operator::I32AtomicLoad16U { ref memarg } => { let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i16_ptr_ty, offset, 2, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_result = self .builder .build_load(effective_address, "") .into_int_value(); let load = narrow_result.as_instruction_value().unwrap(); self.annotate_user_memaccess(memory_index, memarg, 2, load)?; load.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent) .unwrap(); let result = self.builder .build_int_z_extend(narrow_result, self.intrinsics.i32_ty, ""); self.state.push1_extra(result, ExtraInfo::arithmetic_f32()); } Operator::I64AtomicLoad8U { ref memarg } => { let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i8_ptr_ty, offset, 1, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_result = self .builder .build_load(effective_address, "") .into_int_value(); let load = narrow_result.as_instruction_value().unwrap(); self.annotate_user_memaccess(memory_index, memarg, 1, load)?; load.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent) .unwrap(); let result = self.builder .build_int_z_extend(narrow_result, self.intrinsics.i64_ty, ""); self.state.push1_extra(result, ExtraInfo::arithmetic_f64()); } Operator::I64AtomicLoad16U { ref memarg } => { let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i16_ptr_ty, offset, 2, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_result = self .builder .build_load(effective_address, "") .into_int_value(); let load = narrow_result.as_instruction_value().unwrap(); self.annotate_user_memaccess(memory_index, memarg, 2, load)?; load.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent) .unwrap(); let result = self.builder .build_int_z_extend(narrow_result, self.intrinsics.i64_ty, ""); self.state.push1_extra(result, ExtraInfo::arithmetic_f64()); } Operator::I64AtomicLoad32U { ref memarg } => { let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i32_ptr_ty, offset, 4, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_result = self .builder .build_load(effective_address, "") .into_int_value(); let load = narrow_result.as_instruction_value().unwrap(); self.annotate_user_memaccess(memory_index, memarg, 4, load)?; load.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent) .unwrap(); let result = self.builder .build_int_z_extend(narrow_result, self.intrinsics.i64_ty, ""); self.state.push1_extra(result, ExtraInfo::arithmetic_f64()); } Operator::I32AtomicStore { ref memarg } => { let value = self.state.pop1()?; let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i32_ptr_ty, offset, 4, )?; self.trap_if_misaligned(memarg, effective_address); let store = self.builder.build_store(effective_address, value); self.annotate_user_memaccess(memory_index, memarg, 4, store)?; store .set_atomic_ordering(AtomicOrdering::SequentiallyConsistent) .unwrap(); } Operator::I64AtomicStore { ref memarg } => { let value = self.state.pop1()?; let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i64_ptr_ty, offset, 8, )?; self.trap_if_misaligned(memarg, effective_address); let store = self.builder.build_store(effective_address, value); self.annotate_user_memaccess(memory_index, memarg, 8, store)?; store .set_atomic_ordering(AtomicOrdering::SequentiallyConsistent) .unwrap(); } Operator::I32AtomicStore8 { ref memarg } | Operator::I64AtomicStore8 { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i8_ptr_ty, offset, 1, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i8_ty, ""); let store = self.builder.build_store(effective_address, narrow_value); self.annotate_user_memaccess(memory_index, memarg, 1, store)?; store .set_atomic_ordering(AtomicOrdering::SequentiallyConsistent) .unwrap(); } Operator::I32AtomicStore16 { ref memarg } | Operator::I64AtomicStore16 { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i16_ptr_ty, offset, 2, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i16_ty, ""); let store = self.builder.build_store(effective_address, narrow_value); self.annotate_user_memaccess(memory_index, memarg, 2, store)?; store .set_atomic_ordering(AtomicOrdering::SequentiallyConsistent) .unwrap(); } Operator::I64AtomicStore32 { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i32_ptr_ty, offset, 4, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i32_ty, ""); let store = self.builder.build_store(effective_address, narrow_value); self.annotate_user_memaccess(memory_index, memarg, 4, store)?; store .set_atomic_ordering(AtomicOrdering::SequentiallyConsistent) .unwrap(); } Operator::I32AtomicRmw8AddU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i8_ptr_ty, offset, 1, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i8_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Add, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); tbaa_label( &self.module, self.intrinsics, format!("memory {}", memory_index.as_u32()), old.as_instruction_value().unwrap(), ); let old = self .builder .build_int_z_extend(old, self.intrinsics.i32_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f32()); } Operator::I32AtomicRmw16AddU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i16_ptr_ty, offset, 2, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i16_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Add, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); tbaa_label( &self.module, self.intrinsics, format!("memory {}", memory_index.as_u32()), old.as_instruction_value().unwrap(), ); let old = self .builder .build_int_z_extend(old, self.intrinsics.i32_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f32()); } Operator::I32AtomicRmwAdd { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i32_ptr_ty, offset, 4, )?; self.trap_if_misaligned(memarg, effective_address); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Add, effective_address, value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); tbaa_label( &self.module, self.intrinsics, format!("memory {}", memory_index.as_u32()), old.as_instruction_value().unwrap(), ); self.state.push1(old); } Operator::I64AtomicRmw8AddU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i8_ptr_ty, offset, 1, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i8_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Add, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_int_z_extend(old, self.intrinsics.i64_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f64()); } Operator::I64AtomicRmw16AddU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i16_ptr_ty, offset, 2, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i16_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Add, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_int_z_extend(old, self.intrinsics.i64_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f64()); } Operator::I64AtomicRmw32AddU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i32_ptr_ty, offset, 4, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i32_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Add, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_int_z_extend(old, self.intrinsics.i64_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f64()); } Operator::I64AtomicRmwAdd { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i64_ptr_ty, offset, 8, )?; self.trap_if_misaligned(memarg, effective_address); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Add, effective_address, value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; self.state.push1(old); } Operator::I32AtomicRmw8SubU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i8_ptr_ty, offset, 1, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i8_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Sub, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_int_z_extend(old, self.intrinsics.i32_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f32()); } Operator::I32AtomicRmw16SubU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i16_ptr_ty, offset, 2, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i16_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Sub, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_int_z_extend(old, self.intrinsics.i32_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f32()); } Operator::I32AtomicRmwSub { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i32_ptr_ty, offset, 4, )?; self.trap_if_misaligned(memarg, effective_address); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Sub, effective_address, value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; self.state.push1(old); } Operator::I64AtomicRmw8SubU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i8_ptr_ty, offset, 1, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i8_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Sub, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_int_z_extend(old, self.intrinsics.i64_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f32()); } Operator::I64AtomicRmw16SubU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i16_ptr_ty, offset, 2, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i16_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Sub, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_int_z_extend(old, self.intrinsics.i64_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f64()); } Operator::I64AtomicRmw32SubU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i32_ptr_ty, offset, 4, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i32_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Sub, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_int_z_extend(old, self.intrinsics.i64_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f64()); } Operator::I64AtomicRmwSub { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i64_ptr_ty, offset, 8, )?; self.trap_if_misaligned(memarg, effective_address); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Sub, effective_address, value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; self.state.push1(old); } Operator::I32AtomicRmw8AndU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i8_ptr_ty, offset, 1, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i8_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::And, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_int_z_extend(old, self.intrinsics.i32_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f32()); } Operator::I32AtomicRmw16AndU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i16_ptr_ty, offset, 2, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i16_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::And, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_int_z_extend(old, self.intrinsics.i32_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f32()); } Operator::I32AtomicRmwAnd { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i32_ptr_ty, offset, 4, )?; self.trap_if_misaligned(memarg, effective_address); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::And, effective_address, value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; self.state.push1(old); } Operator::I64AtomicRmw8AndU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i8_ptr_ty, offset, 1, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i8_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::And, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_int_z_extend(old, self.intrinsics.i64_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f64()); } Operator::I64AtomicRmw16AndU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i16_ptr_ty, offset, 2, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i16_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::And, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_int_z_extend(old, self.intrinsics.i64_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f64()); } Operator::I64AtomicRmw32AndU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i32_ptr_ty, offset, 4, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i32_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::And, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_int_z_extend(old, self.intrinsics.i64_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f64()); } Operator::I64AtomicRmwAnd { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i64_ptr_ty, offset, 8, )?; self.trap_if_misaligned(memarg, effective_address); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::And, effective_address, value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; self.state.push1(old); } Operator::I32AtomicRmw8OrU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i8_ptr_ty, offset, 1, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i8_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Or, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_int_z_extend(old, self.intrinsics.i32_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f32()); } Operator::I32AtomicRmw16OrU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i16_ptr_ty, offset, 2, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i16_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Or, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_int_z_extend(old, self.intrinsics.i32_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f32()); } Operator::I32AtomicRmwOr { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i32_ptr_ty, offset, 4, )?; self.trap_if_misaligned(memarg, effective_address); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Or, effective_address, value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_int_z_extend(old, self.intrinsics.i32_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f32()); } Operator::I64AtomicRmw8OrU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i8_ptr_ty, offset, 1, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i8_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Or, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_int_z_extend(old, self.intrinsics.i64_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f64()); } Operator::I64AtomicRmw16OrU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i16_ptr_ty, offset, 2, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i16_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Or, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_int_z_extend(old, self.intrinsics.i64_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f64()); } Operator::I64AtomicRmw32OrU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i32_ptr_ty, offset, 4, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i32_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Or, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_int_z_extend(old, self.intrinsics.i64_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f64()); } Operator::I64AtomicRmwOr { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i64_ptr_ty, offset, 8, )?; self.trap_if_misaligned(memarg, effective_address); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Or, effective_address, value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; self.state.push1(old); } Operator::I32AtomicRmw8XorU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i8_ptr_ty, offset, 1, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i8_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Xor, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_int_z_extend(old, self.intrinsics.i32_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f32()); } Operator::I32AtomicRmw16XorU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i16_ptr_ty, offset, 2, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i16_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Xor, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_int_z_extend(old, self.intrinsics.i32_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f32()); } Operator::I32AtomicRmwXor { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i32_ptr_ty, offset, 4, )?; self.trap_if_misaligned(memarg, effective_address); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Xor, effective_address, value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; self.state.push1(old); } Operator::I64AtomicRmw8XorU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i8_ptr_ty, offset, 1, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i8_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Xor, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_int_z_extend(old, self.intrinsics.i64_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f64()); } Operator::I64AtomicRmw16XorU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i16_ptr_ty, offset, 2, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i16_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Xor, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_int_z_extend(old, self.intrinsics.i64_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f64()); } Operator::I64AtomicRmw32XorU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i32_ptr_ty, offset, 4, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i32_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Xor, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_int_z_extend(old, self.intrinsics.i64_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f64()); } Operator::I64AtomicRmwXor { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i64_ptr_ty, offset, 8, )?; self.trap_if_misaligned(memarg, effective_address); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Xor, effective_address, value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; self.state.push1(old); } Operator::I32AtomicRmw8XchgU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i8_ptr_ty, offset, 1, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i8_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Xchg, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_int_z_extend(old, self.intrinsics.i32_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f32()); } Operator::I32AtomicRmw16XchgU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i16_ptr_ty, offset, 2, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i16_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Xchg, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_int_z_extend(old, self.intrinsics.i32_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f32()); } Operator::I32AtomicRmwXchg { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i32_ptr_ty, offset, 4, )?; self.trap_if_misaligned(memarg, effective_address); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Xchg, effective_address, value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; self.state.push1(old); } Operator::I64AtomicRmw8XchgU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i8_ptr_ty, offset, 1, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i8_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Xchg, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_int_z_extend(old, self.intrinsics.i64_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f64()); } Operator::I64AtomicRmw16XchgU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i16_ptr_ty, offset, 2, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i16_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Xchg, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_int_z_extend(old, self.intrinsics.i64_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f64()); } Operator::I64AtomicRmw32XchgU { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i32_ptr_ty, offset, 4, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_value = self.builder .build_int_truncate(value, self.intrinsics.i32_ty, ""); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Xchg, effective_address, narrow_value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_int_z_extend(old, self.intrinsics.i64_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f64()); } Operator::I64AtomicRmwXchg { ref memarg } => { let value = self.state.pop1()?.into_int_value(); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i64_ptr_ty, offset, 8, )?; self.trap_if_misaligned(memarg, effective_address); let old = self .builder .build_atomicrmw( AtomicRMWBinOp::Xchg, effective_address, value, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; self.state.push1(old); } Operator::I32AtomicRmw8CmpxchgU { ref memarg } => { let ((cmp, cmp_info), (new, new_info)) = self.state.pop2_extra()?; let cmp = self.apply_pending_canonicalization(cmp, cmp_info); let new = self.apply_pending_canonicalization(new, new_info); let (cmp, new) = (cmp.into_int_value(), new.into_int_value()); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i8_ptr_ty, offset, 1, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_cmp = self .builder .build_int_truncate(cmp, self.intrinsics.i8_ty, ""); let narrow_new = self .builder .build_int_truncate(new, self.intrinsics.i8_ty, ""); let old = self .builder .build_cmpxchg( effective_address, narrow_cmp, narrow_new, AtomicOrdering::SequentiallyConsistent, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_extract_value(old, 0, "") .unwrap() .into_int_value(); let old = self .builder .build_int_z_extend(old, self.intrinsics.i32_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f32()); } Operator::I32AtomicRmw16CmpxchgU { ref memarg } => { let ((cmp, cmp_info), (new, new_info)) = self.state.pop2_extra()?; let cmp = self.apply_pending_canonicalization(cmp, cmp_info); let new = self.apply_pending_canonicalization(new, new_info); let (cmp, new) = (cmp.into_int_value(), new.into_int_value()); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i16_ptr_ty, offset, 2, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_cmp = self .builder .build_int_truncate(cmp, self.intrinsics.i16_ty, ""); let narrow_new = self .builder .build_int_truncate(new, self.intrinsics.i16_ty, ""); let old = self .builder .build_cmpxchg( effective_address, narrow_cmp, narrow_new, AtomicOrdering::SequentiallyConsistent, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_extract_value(old, 0, "") .unwrap() .into_int_value(); let old = self .builder .build_int_z_extend(old, self.intrinsics.i32_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f32()); } Operator::I32AtomicRmwCmpxchg { ref memarg } => { let ((cmp, cmp_info), (new, new_info)) = self.state.pop2_extra()?; let cmp = self.apply_pending_canonicalization(cmp, cmp_info); let new = self.apply_pending_canonicalization(new, new_info); let (cmp, new) = (cmp.into_int_value(), new.into_int_value()); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i32_ptr_ty, offset, 4, )?; self.trap_if_misaligned(memarg, effective_address); let old = self .builder .build_cmpxchg( effective_address, cmp, new, AtomicOrdering::SequentiallyConsistent, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self.builder.build_extract_value(old, 0, "").unwrap(); self.state.push1(old); } Operator::I64AtomicRmw8CmpxchgU { ref memarg } => { let ((cmp, cmp_info), (new, new_info)) = self.state.pop2_extra()?; let cmp = self.apply_pending_canonicalization(cmp, cmp_info); let new = self.apply_pending_canonicalization(new, new_info); let (cmp, new) = (cmp.into_int_value(), new.into_int_value()); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i8_ptr_ty, offset, 1, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_cmp = self .builder .build_int_truncate(cmp, self.intrinsics.i8_ty, ""); let narrow_new = self .builder .build_int_truncate(new, self.intrinsics.i8_ty, ""); let old = self .builder .build_cmpxchg( effective_address, narrow_cmp, narrow_new, AtomicOrdering::SequentiallyConsistent, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_extract_value(old, 0, "") .unwrap() .into_int_value(); let old = self .builder .build_int_z_extend(old, self.intrinsics.i64_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f64()); } Operator::I64AtomicRmw16CmpxchgU { ref memarg } => { let ((cmp, cmp_info), (new, new_info)) = self.state.pop2_extra()?; let cmp = self.apply_pending_canonicalization(cmp, cmp_info); let new = self.apply_pending_canonicalization(new, new_info); let (cmp, new) = (cmp.into_int_value(), new.into_int_value()); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i16_ptr_ty, offset, 2, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_cmp = self .builder .build_int_truncate(cmp, self.intrinsics.i16_ty, ""); let narrow_new = self .builder .build_int_truncate(new, self.intrinsics.i16_ty, ""); let old = self .builder .build_cmpxchg( effective_address, narrow_cmp, narrow_new, AtomicOrdering::SequentiallyConsistent, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_extract_value(old, 0, "") .unwrap() .into_int_value(); let old = self .builder .build_int_z_extend(old, self.intrinsics.i64_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f64()); } Operator::I64AtomicRmw32CmpxchgU { ref memarg } => { let ((cmp, cmp_info), (new, new_info)) = self.state.pop2_extra()?; let cmp = self.apply_pending_canonicalization(cmp, cmp_info); let new = self.apply_pending_canonicalization(new, new_info); let (cmp, new) = (cmp.into_int_value(), new.into_int_value()); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i32_ptr_ty, offset, 4, )?; self.trap_if_misaligned(memarg, effective_address); let narrow_cmp = self .builder .build_int_truncate(cmp, self.intrinsics.i32_ty, ""); let narrow_new = self .builder .build_int_truncate(new, self.intrinsics.i32_ty, ""); let old = self .builder .build_cmpxchg( effective_address, narrow_cmp, narrow_new, AtomicOrdering::SequentiallyConsistent, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self .builder .build_extract_value(old, 0, "") .unwrap() .into_int_value(); let old = self .builder .build_int_z_extend(old, self.intrinsics.i64_ty, ""); self.state.push1_extra(old, ExtraInfo::arithmetic_f64()); } Operator::I64AtomicRmwCmpxchg { ref memarg } => { let ((cmp, cmp_info), (new, new_info)) = self.state.pop2_extra()?; let cmp = self.apply_pending_canonicalization(cmp, cmp_info); let new = self.apply_pending_canonicalization(new, new_info); let (cmp, new) = (cmp.into_int_value(), new.into_int_value()); let offset = self.state.pop1()?.into_int_value(); let memory_index = MemoryIndex::from_u32(0); let effective_address = self.resolve_memory_ptr( memory_index, memarg, self.intrinsics.i64_ptr_ty, offset, 8, )?; self.trap_if_misaligned(memarg, effective_address); let old = self .builder .build_cmpxchg( effective_address, cmp, new, AtomicOrdering::SequentiallyConsistent, AtomicOrdering::SequentiallyConsistent, ) .unwrap(); self.annotate_user_memaccess( memory_index, memarg, 0, old.as_instruction_value().unwrap(), )?; let old = self.builder.build_extract_value(old, 0, "").unwrap(); self.state.push1(old); } Operator::MemoryGrow { reserved } => { let memory_index = MemoryIndex::from_u32(reserved); let delta = self.state.pop1()?; let grow_fn_ptr = self.ctx.memory_grow(memory_index, self.intrinsics); let grow = self.builder.build_call( grow_fn_ptr, &[ vmctx.as_basic_value_enum(), delta, self.intrinsics .i32_ty .const_int(reserved.into(), false) .as_basic_value_enum(), ], "", ); self.state.push1(grow.try_as_basic_value().left().unwrap()); } Operator::MemorySize { reserved } => { let memory_index = MemoryIndex::from_u32(reserved); let size_fn_ptr = self.ctx.memory_size(memory_index, self.intrinsics); let size = self.builder.build_call( size_fn_ptr, &[ vmctx.as_basic_value_enum(), self.intrinsics .i32_ty .const_int(reserved.into(), false) .as_basic_value_enum(), ], "", ); size.add_attribute(AttributeLoc::Function, self.intrinsics.readonly); self.state.push1(size.try_as_basic_value().left().unwrap()); } _ => { return Err(CompileError::Codegen(format!( "Operator {:?} unimplemented", op ))); } } Ok(()) } } fn is_f32_arithmetic(bits: u32) -> bool { // Mask off sign bit. let bits = bits & 0x7FFF_FFFF; bits < 0x7FC0_0000 } fn is_f64_arithmetic(bits: u64) -> bool { // Mask off sign bit. let bits = bits & 0x7FFF_FFFF_FFFF_FFFF; bits < 0x7FF8_0000_0000_0000 } // Constants for the bounds of truncation operations. These are the least or // greatest exact floats in either f32 or f64 representation // greater-than-or-equal-to (for least) or less-than-or-equal-to (for greatest) // the i32 or i64 or u32 or u64 min (for least) or max (for greatest), when // rounding towards zero. /// Least Exact Float (32 bits) greater-than-or-equal-to i32::MIN when rounding towards zero. const LEF32_GEQ_I32_MIN: u64 = std::i32::MIN as u64; /// Greatest Exact Float (32 bits) less-than-or-equal-to i32::MAX when rounding towards zero. const GEF32_LEQ_I32_MAX: u64 = 2147483520; // bits as f32: 0x4eff_ffff /// Least Exact Float (64 bits) greater-than-or-equal-to i32::MIN when rounding towards zero. const LEF64_GEQ_I32_MIN: u64 = std::i32::MIN as u64; /// Greatest Exact Float (64 bits) less-than-or-equal-to i32::MAX when rounding towards zero. const GEF64_LEQ_I32_MAX: u64 = std::i32::MAX as u64; /// Least Exact Float (32 bits) greater-than-or-equal-to u32::MIN when rounding towards zero. const LEF32_GEQ_U32_MIN: u64 = std::u32::MIN as u64; /// Greatest Exact Float (32 bits) less-than-or-equal-to u32::MAX when rounding towards zero. const GEF32_LEQ_U32_MAX: u64 = 4294967040; // bits as f32: 0x4f7f_ffff /// Least Exact Float (64 bits) greater-than-or-equal-to u32::MIN when rounding towards zero. const LEF64_GEQ_U32_MIN: u64 = std::u32::MIN as u64; /// Greatest Exact Float (64 bits) less-than-or-equal-to u32::MAX when rounding towards zero. const GEF64_LEQ_U32_MAX: u64 = 4294967295; // bits as f64: 0x41ef_ffff_ffff_ffff /// Least Exact Float (32 bits) greater-than-or-equal-to i64::MIN when rounding towards zero. const LEF32_GEQ_I64_MIN: u64 = std::i64::MIN as u64; /// Greatest Exact Float (32 bits) less-than-or-equal-to i64::MAX when rounding towards zero. const GEF32_LEQ_I64_MAX: u64 = 9223371487098961920; // bits as f32: 0x5eff_ffff /// Least Exact Float (64 bits) greater-than-or-equal-to i64::MIN when rounding towards zero. const LEF64_GEQ_I64_MIN: u64 = std::i64::MIN as u64; /// Greatest Exact Float (64 bits) less-than-or-equal-to i64::MAX when rounding towards zero. const GEF64_LEQ_I64_MAX: u64 = 9223372036854774784; // bits as f64: 0x43df_ffff_ffff_ffff /// Least Exact Float (32 bits) greater-than-or-equal-to u64::MIN when rounding towards zero. const LEF32_GEQ_U64_MIN: u64 = std::u64::MIN; /// Greatest Exact Float (32 bits) less-than-or-equal-to u64::MAX when rounding towards zero. const GEF32_LEQ_U64_MAX: u64 = 18446742974197923840; // bits as f32: 0x5f7f_ffff /// Least Exact Float (64 bits) greater-than-or-equal-to u64::MIN when rounding towards zero. const LEF64_GEQ_U64_MIN: u64 = std::u64::MIN; /// Greatest Exact Float (64 bits) less-than-or-equal-to u64::MAX when rounding towards zero. const GEF64_LEQ_U64_MAX: u64 = 18446744073709549568; // bits as f64: 0x43ef_ffff_ffff_ffff