Added WasmPtr and MemoryView to the wasmer API

This commit is contained in:
Syrus
2020-04-27 19:10:39 -07:00
parent 31d5691ed5
commit 26a5683071
9 changed files with 588 additions and 10 deletions

View File

@@ -1,4 +1,5 @@
use crate::exports::{ExportError, Exportable};
use crate::memory_view::MemoryView;
use crate::store::{Store, StoreObject};
use crate::types::{Val, ValAnyFunc};
use crate::Mutability;
@@ -6,7 +7,7 @@ use crate::RuntimeError;
use crate::{ExternType, FuncType, GlobalType, MemoryType, TableType, ValType};
use std::cmp::max;
use std::slice;
use wasm_common::{Bytes, HostFunction, Pages, WasmTypeList, WithEnv, WithoutEnv};
use wasm_common::{Bytes, HostFunction, Pages, ValueType, WasmTypeList, WithEnv, WithoutEnv};
use wasmer_runtime::{
wasmer_call_trampoline, Export, ExportFunction, ExportGlobal, ExportMemory, ExportTable,
Table as RuntimeTable, VMCallerCheckedAnyfunc, VMContext, VMFunctionBody, VMGlobalDefinition,
@@ -393,6 +394,44 @@ impl Memory {
pub fn grow(&self, delta: Pages) -> Result<Pages, RuntimeError> {
Ok(unsafe { (&*self.exported.from) }.grow(delta).unwrap())
}
/// Return a "view" of the currently accessible memory. By
/// default, the view is unsynchronized, using regular memory
/// accesses. You can force a memory view to use atomic accesses
/// by calling the [`MemoryView::atomically`] method.
///
/// # Notes:
///
/// This method is safe (as in, it won't cause the host to crash or have UB),
/// but it doesn't obey rust's rules involving data races, especially concurrent ones.
/// Therefore, if this memory is shared between multiple threads, a single memory
/// location can be mutated concurrently without synchronization.
///
/// # Usage:
///
/// ```
/// # use wasmer::{Memory, MemoryView};
/// # use std::{cell::Cell, sync::atomic::Ordering};
/// # fn view_memory(memory: Memory) {
/// // Without synchronization.
/// let view: MemoryView<u8> = memory.view();
/// for byte in view[0x1000 .. 0x1010].iter().map(Cell::get) {
/// println!("byte: {}", byte);
/// }
///
/// // With synchronization.
/// let atomic_view = view.atomically();
/// for byte in atomic_view[0x1000 .. 0x1010].iter().map(|atom| atom.load(Ordering::SeqCst)) {
/// println!("byte: {}", byte);
/// }
/// # }
/// ```
pub fn view<T: ValueType>(&self) -> MemoryView<T> {
let base = self.data_ptr();
let length = self.size().bytes().0 / std::mem::size_of::<T>();
unsafe { MemoryView::new(base as _, length as u32) }
}
pub(crate) fn from_export(store: &Store, wasmer_export: ExportMemory) -> Memory {
Memory {

View File

@@ -30,6 +30,7 @@ impl Instance {
/// The [`ImportObject`] is the easiest way to provide imports to the instance.
///
/// ```
/// # use wasmer::{imports, Store, Module, Global, Instance};
/// let store = Store::default();
/// let module = Module::new(store, "(module)");
/// let imports = imports!{

View File

@@ -5,7 +5,9 @@ mod exports;
mod externals;
mod import_object;
mod instance;
mod memory_view;
mod module;
mod ptr;
mod store;
mod types;
@@ -13,7 +15,9 @@ pub use crate::exports::{ExportError, Exportable, Exports};
pub use crate::externals::{Extern, Func, Global, Memory, Table};
pub use crate::import_object::{ImportObject, ImportObjectIterator, LikeNamespace};
pub use crate::instance::Instance;
pub use crate::memory_view::MemoryView;
pub use crate::module::Module;
pub use crate::ptr::{Array, Item, WasmPtr};
pub use crate::store::{Engine, Store, StoreObject};
pub use crate::types::{
AnyRef, ExportType, ExternType, FuncType, GlobalType, HostInfo, HostRef, ImportType,

View File

@@ -0,0 +1,96 @@
use wasm_common::ValueType;
use std::sync::atomic::{
AtomicI16, AtomicI32, AtomicI64, AtomicI8, AtomicU16, AtomicU32, AtomicU64, AtomicU8,
};
use std::{cell::Cell, marker::PhantomData, ops::Deref, slice};
pub trait Atomic {
type Output;
}
impl Atomic for i8 {
type Output = AtomicI8;
}
impl Atomic for i16 {
type Output = AtomicI16;
}
impl Atomic for i32 {
type Output = AtomicI32;
}
impl Atomic for i64 {
type Output = AtomicI64;
}
impl Atomic for u8 {
type Output = AtomicU8;
}
impl Atomic for u16 {
type Output = AtomicU16;
}
impl Atomic for u32 {
type Output = AtomicU32;
}
impl Atomic for u64 {
type Output = AtomicU64;
}
impl Atomic for f32 {
type Output = AtomicU32;
}
impl Atomic for f64 {
type Output = AtomicU64;
}
/// A trait that represants an atomic type.
pub trait Atomicity {}
/// Atomically.
pub struct Atomically;
impl Atomicity for Atomically {}
/// Non-atomically.
pub struct NonAtomically;
impl Atomicity for NonAtomically {}
/// A view into a memory.
pub struct MemoryView<'a, T: 'a, A = NonAtomically> {
ptr: *mut T,
length: usize,
_phantom: PhantomData<(&'a [Cell<T>], A)>,
}
impl<'a, T> MemoryView<'a, T, NonAtomically>
where
T: ValueType,
{
pub(super) unsafe fn new(ptr: *mut T, length: u32) -> Self {
Self {
ptr,
length: length as usize,
_phantom: PhantomData,
}
}
}
impl<'a, T: Atomic> MemoryView<'a, T> {
/// Get atomic access to a memory view.
pub fn atomically(&self) -> MemoryView<'a, T::Output, Atomically> {
MemoryView {
ptr: self.ptr as *mut T::Output,
length: self.length,
_phantom: PhantomData,
}
}
}
impl<'a, T> Deref for MemoryView<'a, T, NonAtomically> {
type Target = [Cell<T>];
fn deref(&self) -> &[Cell<T>] {
let mut_slice: &mut [T] = unsafe { slice::from_raw_parts_mut(self.ptr, self.length) };
let cell_slice: &Cell<[T]> = Cell::from_mut(mut_slice);
cell_slice.as_slice_of_cells()
}
}
impl<'a, T> Deref for MemoryView<'a, T, Atomically> {
type Target = [T];
fn deref(&self) -> &[T] {
unsafe { slice::from_raw_parts(self.ptr as *const T, self.length) }
}
}

351
lib/api/src/ptr.rs Normal file
View File

@@ -0,0 +1,351 @@
//! Types for a reusable pointer abstraction for accessing Wasm linear memory.
//!
//! This abstraction is safe: it ensures the memory is in bounds and that the pointer
//! is aligned (avoiding undefined behavior).
//!
//! Therefore, you should use this abstraction whenever possible to avoid memory
//! related bugs when implementing an ABI.
use crate::externals::Memory;
use wasm_common::{ValueType, WasmExternType};
use std::{cell::Cell, fmt, marker::PhantomData, mem};
/// The `Array` marker type. This type can be used like `WasmPtr<T, Array>`
/// to get access to methods
pub struct Array;
/// The `Item` marker type. This is the default and does not usually need to be
/// specified.
pub struct Item;
/// A zero-cost type that represents a pointer to something in Wasm linear
/// memory.
///
/// This type can be used directly in the host function arguments:
/// ```
/// # use wasmer::Memory;
/// # use wasmer::WasmPtr;
/// pub fn host_import(memory: Memory, ptr: WasmPtr<u32>) {
/// let derefed_ptr = ptr.deref(memory).expect("pointer in bounds");
/// let inner_val: u32 = derefed_ptr.get();
/// println!("Got {} from Wasm memory address 0x{:X}", inner_val, ptr.offset());
/// // update the value being pointed to
/// derefed_ptr.set(inner_val + 1);
/// }
/// ```
#[repr(transparent)]
pub struct WasmPtr<T: Copy, Ty = Item> {
offset: u32,
_phantom: PhantomData<(T, Ty)>,
}
/// Methods relevant to all types of `WasmPtr`.
impl<T: Copy, Ty> WasmPtr<T, Ty> {
/// Create a new `WasmPtr` at the given offset.
#[inline]
pub fn new(offset: u32) -> Self {
Self {
offset,
_phantom: PhantomData,
}
}
/// Get the offset into Wasm linear memory for this `WasmPtr`.
#[inline]
pub fn offset(self) -> u32 {
self.offset
}
}
#[inline(always)]
fn align_pointer(ptr: usize, align: usize) -> usize {
// clears bits below aligment amount (assumes power of 2) to align pointer
debug_assert!(align.count_ones() == 1);
ptr & !(align - 1)
}
/// Methods for `WasmPtr`s to data that can be dereferenced, namely to types
/// that implement [`ValueType`], meaning that they're valid for all possible
/// bit patterns.
impl<T: Copy + ValueType> WasmPtr<T, Item> {
/// Dereference the `WasmPtr` getting access to a `&Cell<T>` allowing for
/// reading and mutating of the inner value.
///
/// This method is unsound if used with unsynchronized shared memory.
/// If you're unsure what that means, it likely does not apply to you.
/// This invariant will be enforced in the future.
#[inline]
pub fn deref<'a>(self, memory: &'a Memory) -> Option<&'a Cell<T>> {
if (self.offset as usize) + mem::size_of::<T>() > memory.size().bytes().0
|| mem::size_of::<T>() == 0
{
return None;
}
unsafe {
let cell_ptr = align_pointer(
memory.view::<u8>().as_ptr().add(self.offset as usize) as usize,
mem::align_of::<T>(),
) as *const Cell<T>;
Some(&*cell_ptr)
}
}
/// Mutably dereference this `WasmPtr` getting a `&mut Cell<T>` allowing for
/// direct access to a `&mut T`.
///
/// # Safety
/// - This method does not do any aliasing checks: it's possible to create
/// `&mut T` that point to the same memory. You should ensure that you have
/// exclusive access to Wasm linear memory before calling this method.
#[inline]
pub unsafe fn deref_mut<'a>(self, memory: &'a Memory) -> Option<&'a mut Cell<T>> {
if (self.offset as usize) + mem::size_of::<T>() > memory.size().bytes().0
|| mem::size_of::<T>() == 0
{
return None;
}
let cell_ptr = align_pointer(
memory.view::<u8>().as_ptr().add(self.offset as usize) as usize,
mem::align_of::<T>(),
) as *mut Cell<T>;
Some(&mut *cell_ptr)
}
}
/// Methods for `WasmPtr`s to arrays of data that can be dereferenced, namely to
/// types that implement [`ValueType`], meaning that they're valid for all
/// possible bit patterns.
impl<T: Copy + ValueType> WasmPtr<T, Array> {
/// Dereference the `WasmPtr` getting access to a `&[Cell<T>]` allowing for
/// reading and mutating of the inner values.
///
/// This method is unsound if used with unsynchronized shared memory.
/// If you're unsure what that means, it likely does not apply to you.
/// This invariant will be enforced in the future.
#[inline]
pub fn deref(self, memory: &Memory, index: u32, length: u32) -> Option<&[Cell<T>]> {
// gets the size of the item in the array with padding added such that
// for any index, we will always result an aligned memory access
let item_size = mem::size_of::<T>() + (mem::size_of::<T>() % mem::align_of::<T>());
let slice_full_len = index as usize + length as usize;
let memory_size = memory.size().bytes().0;
if (self.offset as usize) + (item_size * slice_full_len) > memory_size
|| self.offset as usize >= memory_size
|| mem::size_of::<T>() == 0
{
return None;
}
unsafe {
let cell_ptr = align_pointer(
memory.view::<u8>().as_ptr().add(self.offset as usize) as usize,
mem::align_of::<T>(),
) as *const Cell<T>;
let cell_ptrs = &std::slice::from_raw_parts(cell_ptr, slice_full_len)
[index as usize..slice_full_len];
Some(cell_ptrs)
}
}
/// Mutably dereference this `WasmPtr` getting a `&mut [Cell<T>]` allowing for
/// direct access to a `&mut [T]`.
///
/// # Safety
/// - This method does not do any aliasing checks: it's possible to create
/// `&mut T` that point to the same memory. You should ensure that you have
/// exclusive access to Wasm linear memory before calling this method.
#[inline]
pub unsafe fn deref_mut(
self,
memory: &Memory,
index: u32,
length: u32,
) -> Option<&mut [Cell<T>]> {
// gets the size of the item in the array with padding added such that
// for any index, we will always result an aligned memory access
let item_size = mem::size_of::<T>() + (mem::size_of::<T>() % mem::align_of::<T>());
let slice_full_len = index as usize + length as usize;
let memory_size = memory.size().bytes().0;
if (self.offset as usize) + (item_size * slice_full_len) > memory.size().bytes().0
|| self.offset as usize >= memory_size
|| mem::size_of::<T>() == 0
{
return None;
}
let cell_ptr = align_pointer(
memory.view::<u8>().as_ptr().add(self.offset as usize) as usize,
mem::align_of::<T>(),
) as *mut Cell<T>;
let cell_ptrs = &mut std::slice::from_raw_parts_mut(cell_ptr, slice_full_len)
[index as usize..slice_full_len];
Some(cell_ptrs)
}
/// Get a UTF-8 string from the `WasmPtr` with the given length.
///
/// Note that this method returns a reference to Wasm linear memory. The
/// underlying data can be mutated if the Wasm is allowed to execute or
/// an aliasing `WasmPtr` is used to mutate memory.
pub fn get_utf8_string(self, memory: &Memory, str_len: u32) -> Option<&str> {
let memory_size = memory.size().bytes().0;
if self.offset as usize + str_len as usize > memory.size().bytes().0
|| self.offset as usize >= memory_size
{
return None;
}
let ptr = unsafe { memory.view::<u8>().as_ptr().add(self.offset as usize) as *const u8 };
let slice: &[u8] = unsafe { std::slice::from_raw_parts(ptr, str_len as usize) };
std::str::from_utf8(slice).ok()
}
/// Get a UTF-8 string from the `WasmPtr`, where the string is nul-terminated.
///
/// Note that this does not account for UTF-8 strings that _contain_ nul themselves,
/// [`get_utf8_string`] has to be used for those.
///
/// Also note that this method returns a reference to Wasm linear memory. The
/// underlying data can be mutated if the Wasm is allowed to execute or
/// an aliasing `WasmPtr` is used to mutate memory.
pub fn get_utf8_string_with_nul(self, memory: &Memory) -> Option<&str> {
memory.view::<u8>()[(self.offset as usize)..]
.iter()
.map(|cell| cell.get())
.position(|byte| byte == 0)
.and_then(|length| self.get_utf8_string(memory, length as u32))
}
}
unsafe impl<T: Copy, Ty> WasmExternType for WasmPtr<T, Ty> {
type Native = i32;
fn to_native(self) -> Self::Native {
self.offset as i32
}
fn from_native(n: Self::Native) -> Self {
Self {
offset: n as u32,
_phantom: PhantomData,
}
}
}
unsafe impl<T: Copy, Ty> ValueType for WasmPtr<T, Ty> {}
impl<T: Copy, Ty> Clone for WasmPtr<T, Ty> {
fn clone(&self) -> Self {
Self {
offset: self.offset,
_phantom: PhantomData,
}
}
}
impl<T: Copy, Ty> Copy for WasmPtr<T, Ty> {}
impl<T: Copy, Ty> PartialEq for WasmPtr<T, Ty> {
fn eq(&self, other: &Self) -> bool {
self.offset == other.offset
}
}
impl<T: Copy, Ty> Eq for WasmPtr<T, Ty> {}
impl<T: Copy, Ty> fmt::Debug for WasmPtr<T, Ty> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "WasmPtr({:#x})", self.offset)
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::{Memory, MemoryType, Store};
/// Ensure that memory accesses work on the edges of memory and that out of
/// bounds errors are caught with both `deref` and `deref_mut`.
#[test]
fn wasm_ptr_memory_bounds_checks_hold() {
// create a memory
let store = Store::default();
let memory_descriptor = MemoryType::new(1, Some(1), false);
let memory = Memory::new(&store, memory_descriptor);
// test that basic access works and that len = 0 works, but oob does not
let start_wasm_ptr: WasmPtr<u8> = WasmPtr::new(0);
let start_wasm_ptr_array: WasmPtr<u8, Array> = WasmPtr::new(0);
assert!(start_wasm_ptr.deref(&memory).is_some());
assert!(unsafe { start_wasm_ptr.deref_mut(&memory).is_some() });
assert!(start_wasm_ptr_array.deref(&memory, 0, 0).is_some());
assert!(start_wasm_ptr_array.get_utf8_string(&memory, 0).is_some());
assert!(unsafe { start_wasm_ptr_array.deref_mut(&memory, 0, 0).is_some() });
assert!(start_wasm_ptr_array.deref(&memory, 0, 1).is_some());
assert!(unsafe { start_wasm_ptr_array.deref_mut(&memory, 0, 1).is_some() });
// test that accessing the last valid memory address works correctly and OOB is caught
let last_valid_address_for_u8 = (memory.size().bytes().0 - 1) as u32;
let end_wasm_ptr: WasmPtr<u8> = WasmPtr::new(last_valid_address_for_u8);
assert!(end_wasm_ptr.deref(&memory).is_some());
assert!(unsafe { end_wasm_ptr.deref_mut(&memory).is_some() });
let end_wasm_ptr_array: WasmPtr<u8, Array> = WasmPtr::new(last_valid_address_for_u8);
assert!(end_wasm_ptr_array.deref(&memory, 0, 1).is_some());
assert!(unsafe { end_wasm_ptr_array.deref_mut(&memory, 0, 1).is_some() });
let invalid_idx_len_combos: [(u32, u32); 3] =
[(last_valid_address_for_u8 + 1, 0), (0, 2), (1, 1)];
for &(idx, len) in invalid_idx_len_combos.iter() {
assert!(end_wasm_ptr_array.deref(&memory, idx, len).is_none());
assert!(unsafe { end_wasm_ptr_array.deref_mut(&memory, idx, len).is_none() });
}
assert!(end_wasm_ptr_array.get_utf8_string(&memory, 2).is_none());
// test that accesing the last valid memory address for a u32 is valid
// (same as above test but with more edge cases to assert on)
let last_valid_address_for_u32 = (memory.size().bytes().0 - 4) as u32;
let end_wasm_ptr: WasmPtr<u32> = WasmPtr::new(last_valid_address_for_u32);
assert!(end_wasm_ptr.deref(&memory).is_some());
assert!(unsafe { end_wasm_ptr.deref_mut(&memory).is_some() });
assert!(end_wasm_ptr.deref(&memory).is_some());
assert!(unsafe { end_wasm_ptr.deref_mut(&memory).is_some() });
let end_wasm_ptr_oob_array: [WasmPtr<u32>; 4] = [
WasmPtr::new(last_valid_address_for_u32 + 1),
WasmPtr::new(last_valid_address_for_u32 + 2),
WasmPtr::new(last_valid_address_for_u32 + 3),
WasmPtr::new(last_valid_address_for_u32 + 4),
];
for oob_end_ptr in end_wasm_ptr_oob_array.iter() {
assert!(oob_end_ptr.deref(&memory).is_none());
assert!(unsafe { oob_end_ptr.deref_mut(&memory).is_none() });
}
let end_wasm_ptr_array: WasmPtr<u32, Array> = WasmPtr::new(last_valid_address_for_u32);
assert!(end_wasm_ptr_array.deref(&memory, 0, 1).is_some());
assert!(unsafe { end_wasm_ptr_array.deref_mut(&memory, 0, 1).is_some() });
let invalid_idx_len_combos: [(u32, u32); 3] =
[(last_valid_address_for_u32 + 1, 0), (0, 2), (1, 1)];
for &(idx, len) in invalid_idx_len_combos.iter() {
assert!(end_wasm_ptr_array.deref(&memory, idx, len).is_none());
assert!(unsafe { end_wasm_ptr_array.deref_mut(&memory, idx, len).is_none() });
}
let end_wasm_ptr_array_oob_array: [WasmPtr<u32, Array>; 4] = [
WasmPtr::new(last_valid_address_for_u32 + 1),
WasmPtr::new(last_valid_address_for_u32 + 2),
WasmPtr::new(last_valid_address_for_u32 + 3),
WasmPtr::new(last_valid_address_for_u32 + 4),
];
for oob_end_array_ptr in end_wasm_ptr_array_oob_array.iter() {
assert!(oob_end_array_ptr.deref(&memory, 0, 1).is_none());
assert!(unsafe { oob_end_array_ptr.deref_mut(&memory, 0, 1).is_none() });
assert!(oob_end_array_ptr.deref(&memory, 1, 0).is_none());
assert!(unsafe { oob_end_array_ptr.deref_mut(&memory, 1, 0).is_none() });
}
}
}

View File

@@ -1,8 +1,5 @@
mod address_map;
mod frame_layout;
pub use self::address_map::{
ModuleMemoryOffset,
ModuleVmctxInfo, ValueLabelsRanges,
};
pub use self::address_map::{ModuleMemoryOffset, ModuleVmctxInfo, ValueLabelsRanges};
pub use self::frame_layout::{FrameLayout, FrameLayoutChange, FrameLayouts};

View File

@@ -57,10 +57,7 @@ mod unwind;
pub use crate::compiler::{transform_jump_table, CraneliftCompiler};
pub use crate::config::CraneliftConfig;
pub use crate::debug::{FrameLayout, FrameLayoutChange, FrameLayouts};
pub use crate::debug::{
ModuleMemoryOffset,
ModuleVmctxInfo, ValueLabelsRanges,
};
pub use crate::debug::{ModuleMemoryOffset, ModuleVmctxInfo, ValueLabelsRanges};
pub use crate::trampoline::make_wasm_trampoline;
pub use crate::unwind::compiled_function_unwind_info;

View File

@@ -43,7 +43,10 @@ pub use crate::indexes::{
DataIndex, ElemIndex, ExportIndex, FuncIndex, GlobalIndex, ImportIndex, LocalFuncIndex,
LocalGlobalIndex, LocalMemoryIndex, LocalTableIndex, MemoryIndex, SignatureIndex, TableIndex,
};
pub use crate::native::{Func, HostFunction, NativeWasmType, WasmTypeList, WithEnv, WithoutEnv};
pub use crate::native::{
Func, HostFunction, NativeWasmType, ValueType, WasmExternType, WasmTypeList, WithEnv,
WithoutEnv,
};
pub use crate::r#ref::{AnyRef, HostInfo, HostRef};
pub use crate::units::{Bytes, Pages};
pub use crate::values::Value;

View File

@@ -70,6 +70,96 @@ mod test_native_type {
}
}
/// A trait to represent a wasm extern type.
pub unsafe trait WasmExternType: Copy
where
Self: Sized,
{
/// Native wasm type for this `WasmExternType`.
type Native: NativeWasmType;
/// Convert from given `Native` type to self.
fn from_native(native: Self::Native) -> Self;
/// Convert self to `Native` type.
fn to_native(self) -> Self::Native;
}
macro_rules! wasm_extern_type {
($type:ty => $native_type:ty) => {
unsafe impl WasmExternType for $type {
type Native = $native_type;
fn from_native(native: Self::Native) -> Self {
native as _
}
fn to_native(self) -> Self::Native {
self as _
}
}
};
}
wasm_extern_type!(i8 => i32);
wasm_extern_type!(u8 => i32);
wasm_extern_type!(i16 => i32);
wasm_extern_type!(u16 => i32);
wasm_extern_type!(i32 => i32);
wasm_extern_type!(u32 => i32);
wasm_extern_type!(i64 => i64);
wasm_extern_type!(u64 => i64);
wasm_extern_type!(f32 => f32);
wasm_extern_type!(f64 => f64);
// wasm_extern_type!(u128 => i128);
// wasm_extern_type!(i128 => i128);
// pub trait IntegerAtomic
// where
// Self: Sized
// {
// type Primitive;
// fn add(&self, other: Self::Primitive) -> Self::Primitive;
// fn sub(&self, other: Self::Primitive) -> Self::Primitive;
// fn and(&self, other: Self::Primitive) -> Self::Primitive;
// fn or(&self, other: Self::Primitive) -> Self::Primitive;
// fn xor(&self, other: Self::Primitive) -> Self::Primitive;
// fn load(&self) -> Self::Primitive;
// fn store(&self, other: Self::Primitive) -> Self::Primitive;
// fn compare_exchange(&self, expected: Self::Primitive, new: Self::Primitive) -> Self::Primitive;
// fn swap(&self, other: Self::Primitive) -> Self::Primitive;
// }
/// Trait for a Value type. A Value type is a type that is always valid and may
/// be safely copied.
///
/// That is, for all possible bit patterns a valid Value type can be constructed
/// from those bits.
///
/// Concretely a `u32` is a Value type because every combination of 32 bits is
/// a valid `u32`. However a `bool` is _not_ a Value type because any bit patterns
/// other than `0` and `1` are invalid in Rust and may cause undefined behavior if
/// a `bool` is constructed from those bytes.
pub unsafe trait ValueType: Copy
where
Self: Sized,
{
}
macro_rules! convert_value_impl {
($t:ty) => {
unsafe impl ValueType for $t {}
};
( $($t:ty),* ) => {
$(
convert_value_impl!($t);
)*
};
}
convert_value_impl!(u8, i8, u16, i16, u32, i32, u64, i64, f32, f64);
/// Represents a list of WebAssembly values.
pub trait WasmTypeList {
/// CStruct type.