mirror of
https://github.com/mii443/usls.git
synced 2025-08-22 15:45:41 +00:00
256 lines
6.9 KiB
Rust
256 lines
6.9 KiB
Rust
use anyhow::Result;
|
|
use image::DynamicImage;
|
|
use ndarray::{Array, Dim, IntoDimension, IxDyn, IxDynImpl};
|
|
|
|
use crate::{Ops, ResizeMode};
|
|
|
|
/// Wrapper over [`Array<f32, IxDyn>`]
|
|
#[derive(Debug, Clone, Default, PartialEq)]
|
|
pub struct X(pub Array<f32, IxDyn>);
|
|
|
|
impl From<Array<f32, IxDyn>> for X {
|
|
fn from(x: Array<f32, IxDyn>) -> Self {
|
|
Self(x)
|
|
}
|
|
}
|
|
|
|
impl From<Vec<f32>> for X {
|
|
fn from(x: Vec<f32>) -> Self {
|
|
Self(Array::from_vec(x).into_dyn().into_owned())
|
|
}
|
|
}
|
|
|
|
impl TryFrom<Vec<(u32, u32)>> for X {
|
|
type Error = anyhow::Error;
|
|
|
|
fn try_from(values: Vec<(u32, u32)>) -> Result<Self, Self::Error> {
|
|
if values.is_empty() {
|
|
Ok(Self::default())
|
|
} else {
|
|
let mut flattened: Vec<u32> = Vec::new();
|
|
for &(a, b) in values.iter() {
|
|
flattened.push(a);
|
|
flattened.push(b);
|
|
}
|
|
let shape = (values.len(), 2);
|
|
let x = Array::from_shape_vec(shape, flattened)?
|
|
.map(|x| *x as f32)
|
|
.into_dyn();
|
|
Ok(Self(x))
|
|
}
|
|
}
|
|
}
|
|
|
|
impl TryFrom<Vec<Vec<f32>>> for X {
|
|
type Error = anyhow::Error;
|
|
|
|
fn try_from(xs: Vec<Vec<f32>>) -> Result<Self, Self::Error> {
|
|
if xs.is_empty() {
|
|
Ok(Self::default())
|
|
} else {
|
|
let shape = (xs.len(), xs[0].len());
|
|
let flattened: Vec<f32> = xs.iter().flatten().cloned().collect();
|
|
let x = Array::from_shape_vec(shape, flattened)?.into_dyn();
|
|
Ok(Self(x))
|
|
}
|
|
}
|
|
}
|
|
|
|
impl std::ops::Deref for X {
|
|
type Target = Array<f32, IxDyn>;
|
|
|
|
fn deref(&self) -> &Self::Target {
|
|
&self.0
|
|
}
|
|
}
|
|
|
|
impl X {
|
|
// TODO: Add some slice and index method
|
|
|
|
pub fn zeros(shape: &[usize]) -> Self {
|
|
Self::from(Array::zeros(Dim(IxDynImpl::from(shape.to_vec()))))
|
|
}
|
|
|
|
pub fn ones(shape: &[usize]) -> Self {
|
|
Self::from(Array::ones(Dim(IxDynImpl::from(shape.to_vec()))))
|
|
}
|
|
|
|
pub fn zeros_like(x: &Self) -> Self {
|
|
Self::from(Array::zeros(x.raw_dim()))
|
|
}
|
|
|
|
pub fn ones_like(x: &Self) -> Self {
|
|
Self::from(Array::ones(x.raw_dim()))
|
|
}
|
|
|
|
pub fn full(shape: &[usize], x: f32) -> Self {
|
|
Self::from(Array::from_elem(shape, x))
|
|
}
|
|
|
|
pub fn from_shape_vec(shape: &[usize], xs: Vec<f32>) -> Result<Self> {
|
|
Ok(Self::from(Array::from_shape_vec(shape, xs)?))
|
|
}
|
|
|
|
pub fn apply(ops: &[Ops]) -> Result<Self> {
|
|
let mut y = Self::default();
|
|
for op in ops {
|
|
y = match op {
|
|
Ops::FitExact(xs, h, w, filter) => Self::resize(xs, *h, *w, filter)?,
|
|
Ops::Letterbox(xs, h, w, filter, bg, resize_by, center) => {
|
|
Self::letterbox(xs, *h, *w, filter, *bg, resize_by, *center)?
|
|
}
|
|
Ops::Normalize(min_, max_) => y.normalize(*min_, *max_)?,
|
|
Ops::Standardize(mean, std, d) => y.standardize(mean, std, *d)?,
|
|
Ops::Permute(shape) => y.permute(shape)?,
|
|
Ops::InsertAxis(d) => y.insert_axis(*d)?,
|
|
Ops::Nhwc2nchw => y.nhwc2nchw()?,
|
|
Ops::Nchw2nhwc => y.nchw2nhwc()?,
|
|
Ops::Sigmoid => y.sigmoid()?,
|
|
_ => todo!(),
|
|
}
|
|
}
|
|
Ok(y)
|
|
}
|
|
|
|
pub fn sigmoid(mut self) -> Result<Self> {
|
|
self.0 = Ops::sigmoid(self.0);
|
|
Ok(self)
|
|
}
|
|
|
|
pub fn broadcast<D: IntoDimension + std::fmt::Debug + Copy>(mut self, dim: D) -> Result<Self> {
|
|
self.0 = Ops::broadcast(self.0, dim)?;
|
|
Ok(self)
|
|
}
|
|
|
|
pub fn to_shape<D: ndarray::ShapeArg>(mut self, dim: D) -> Result<Self> {
|
|
self.0 = Ops::to_shape(self.0, dim)?;
|
|
Ok(self)
|
|
}
|
|
|
|
pub fn permute(mut self, shape: &[usize]) -> Result<Self> {
|
|
self.0 = Ops::permute(self.0, shape)?;
|
|
Ok(self)
|
|
}
|
|
|
|
pub fn nhwc2nchw(mut self) -> Result<Self> {
|
|
self.0 = Ops::nhwc2nchw(self.0)?;
|
|
Ok(self)
|
|
}
|
|
|
|
pub fn nchw2nhwc(mut self) -> Result<Self> {
|
|
self.0 = Ops::nchw2nhwc(self.0)?;
|
|
Ok(self)
|
|
}
|
|
|
|
pub fn insert_axis(mut self, d: usize) -> Result<Self> {
|
|
self.0 = Ops::insert_axis(self.0, d)?;
|
|
Ok(self)
|
|
}
|
|
|
|
pub fn repeat(mut self, d: usize, n: usize) -> Result<Self> {
|
|
self.0 = Ops::repeat(self.0, d, n)?;
|
|
Ok(self)
|
|
}
|
|
|
|
pub fn concatenate(mut self, other: &Self, d: usize) -> Result<Self> {
|
|
self.0 = Ops::concatenate(&self.0, other, d)?;
|
|
Ok(self)
|
|
}
|
|
|
|
pub fn concat(xs: &[Self], d: usize) -> Result<Self> {
|
|
let xs = xs.iter().cloned().map(|x| x.0).collect::<Vec<_>>();
|
|
let x = Ops::concat(&xs, d)?;
|
|
Ok(x.into())
|
|
}
|
|
|
|
pub fn dims(&self) -> &[usize] {
|
|
self.0.shape()
|
|
}
|
|
|
|
pub fn ndim(&self) -> usize {
|
|
self.0.ndim()
|
|
}
|
|
|
|
pub fn normalize(mut self, min_: f32, max_: f32) -> Result<Self> {
|
|
Ops::normalize(&mut self.0, min_, max_)?;
|
|
|
|
Ok(self)
|
|
}
|
|
|
|
pub fn standardize(mut self, mean: &[f32], std: &[f32], dim: usize) -> Result<Self> {
|
|
Ops::standardize(&mut self.0, mean.into(), std.into(), dim)?;
|
|
Ok(self)
|
|
}
|
|
|
|
pub fn norm(mut self, d: usize) -> Result<Self> {
|
|
self.0 = Ops::norm(self.0, d)?;
|
|
Ok(self)
|
|
}
|
|
|
|
pub fn unsigned(mut self) -> Self {
|
|
self.0.par_mapv_inplace(|x| if x < 0.0 { 0.0 } else { x });
|
|
self
|
|
}
|
|
|
|
pub fn resize(xs: &[DynamicImage], height: u32, width: u32, filter: &str) -> Result<Self> {
|
|
Ok(Self::from(Ops::resize(xs, height, width, filter)?))
|
|
}
|
|
|
|
pub fn letterbox(
|
|
xs: &[DynamicImage],
|
|
height: u32,
|
|
width: u32,
|
|
filter: &str,
|
|
bg: u8,
|
|
resize_by: &str,
|
|
center: bool,
|
|
) -> Result<Self> {
|
|
Ok(Self::from(Ops::letterbox(
|
|
xs, height, width, filter, bg, resize_by, center,
|
|
)?))
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
pub fn preprocess(
|
|
xs: &[image::DynamicImage],
|
|
image_width: u32,
|
|
image_height: u32,
|
|
resize_mode: &ResizeMode,
|
|
resizer_filter: &str,
|
|
padding_value: u8,
|
|
letterbox_center: bool,
|
|
normalize: bool,
|
|
image_std: &[f32],
|
|
image_mean: &[f32],
|
|
nchw: bool,
|
|
) -> Result<Self> {
|
|
let mut x = match resize_mode {
|
|
ResizeMode::FitExact => X::resize(xs, image_height, image_width, resizer_filter)?,
|
|
ResizeMode::Letterbox => X::letterbox(
|
|
xs,
|
|
image_height,
|
|
image_width,
|
|
resizer_filter,
|
|
padding_value,
|
|
"auto",
|
|
letterbox_center,
|
|
)?,
|
|
_ => unimplemented!(),
|
|
};
|
|
|
|
if normalize {
|
|
x = x.normalize(0., 255.)?;
|
|
}
|
|
|
|
if !image_std.is_empty() && !image_mean.is_empty() {
|
|
x = x.standardize(image_mean, image_std, 3)?;
|
|
}
|
|
|
|
if nchw {
|
|
x = x.nhwc2nchw()?;
|
|
}
|
|
|
|
Ok(x)
|
|
}
|
|
}
|