Files
usls/src/models/owl/impl.rs
jamjamjon 26de63d239 update
2025-05-19 23:25:48 +08:00

159 lines
5.1 KiB
Rust

use aksr::Builder;
use anyhow::Result;
use ndarray::{s, Axis};
use rayon::prelude::*;
use crate::{elapsed, DynConf, Engine, Hbb, Image, ModelConfig, Processor, Ts, Xs, X, Y};
#[derive(Debug, Builder)]
pub struct OWLv2 {
engine: Engine,
height: usize,
width: usize,
batch: usize,
names: Vec<String>,
names_with_prompt: Vec<String>,
confs: DynConf,
ts: Ts,
processor: Processor,
spec: String,
input_ids: X,
attention_mask: X,
}
impl OWLv2 {
pub fn new(config: ModelConfig) -> Result<Self> {
let engine = Engine::try_from_config(&config.model)?;
let (batch, height, width, ts) = (
engine.batch().opt(),
engine.try_height().unwrap_or(&960.into()).opt(),
engine.try_width().unwrap_or(&960.into()).opt(),
engine.ts.clone(),
);
let spec = engine.spec().to_owned();
let names: Vec<String> = config.text_names().to_vec();
if names.is_empty() {
anyhow::bail!(
"No valid class names were provided in the config. Ensure the 'text_names' field is non-empty and contains valid class names."
);
}
let names_with_prompt: Vec<String> =
names.iter().map(|x| format!("a photo of {}", x)).collect();
let n = names.len();
let confs = DynConf::new(config.class_confs(), n);
let processor = Processor::try_from_config(&config.processor)?
.with_image_width(width as _)
.with_image_height(height as _);
let input_ids: Vec<f32> = processor
.encode_texts_ids(
&names_with_prompt
.iter()
.map(|x| x.as_str())
.collect::<Vec<_>>(),
false,
)?
.into_iter()
.flatten()
.collect();
let input_ids: X = ndarray::Array2::from_shape_vec((n, input_ids.len() / n), input_ids)?
.into_dyn()
.into();
let attention_mask = X::ones_like(&input_ids);
Ok(Self {
engine,
height,
width,
batch,
spec,
names,
names_with_prompt,
confs,
ts,
processor,
input_ids,
attention_mask,
})
}
fn preprocess(&mut self, xs: &[Image]) -> Result<Xs> {
let image_embeddings = self.processor.process_images(xs)?;
let xs = Xs::from(vec![
self.input_ids.clone(),
image_embeddings,
self.attention_mask.clone(),
]);
Ok(xs)
}
fn inference(&mut self, xs: Xs) -> Result<Xs> {
self.engine.run(xs)
}
pub fn forward(&mut self, xs: &[Image]) -> Result<Vec<Y>> {
let ys = elapsed!("preprocess", self.ts, { self.preprocess(xs)? });
let ys = elapsed!("inference", self.ts, { self.inference(ys)? });
let ys = elapsed!("postprocess", self.ts, { self.postprocess(ys)? });
Ok(ys)
}
fn postprocess(&mut self, xs: Xs) -> Result<Vec<Y>> {
let ys: Vec<Y> = xs[0]
.axis_iter(Axis(0))
.into_par_iter()
.zip(xs[1].axis_iter(Axis(0)).into_par_iter())
.enumerate()
.filter_map(|(idx, (clss, bboxes))| {
let (image_height, image_width) = (
self.processor.images_transform_info[idx].height_src,
self.processor.images_transform_info[idx].width_src,
);
let ratio = image_height.max(image_width) as f32;
let y_bboxes: Vec<Hbb> = clss
.axis_iter(Axis(0))
.into_par_iter()
.enumerate()
.filter_map(|(i, clss_)| {
let (class_id, &confidence) = clss_
.into_iter()
.enumerate()
.max_by(|a, b| a.1.total_cmp(b.1))?;
let confidence = 1. / ((-confidence).exp() + 1.);
if confidence < self.confs[class_id] {
return None;
}
let bbox = bboxes.slice(s![i, ..]).mapv(|x| x * ratio);
let (x, y, w, h) = (
(bbox[0] - bbox[2] / 2.).max(0.0f32),
(bbox[1] - bbox[3] / 2.).max(0.0f32),
bbox[2],
bbox[3],
);
Some(
Hbb::default()
.with_xywh(x, y, w, h)
.with_confidence(confidence)
.with_id(class_id)
.with_name(&self.names[class_id]),
)
})
.collect();
Some(Y::default().with_hbbs(&y_bboxes))
})
.collect();
Ok(ys)
}
pub fn summary(&mut self) {
self.ts.summary();
}
}