mirror of
https://github.com/mii443/tokenizers.git
synced 2025-08-23 00:35:35 +00:00
141 lines
4.6 KiB
Python
141 lines
4.6 KiB
Python
import time
|
|
import argparse
|
|
from tqdm import tqdm
|
|
|
|
import logging
|
|
|
|
logging.getLogger("transformers").disabled = True
|
|
logging.getLogger("transformers.tokenization_utils").disabled = True
|
|
|
|
from tokenizers import Tokenizer, pre_tokenizers, decoders
|
|
from tokenizers.models import BPE, WordPiece
|
|
from tokenizers.processors import BertProcessing
|
|
from tokenizers.normalizers import BertNormalizer
|
|
|
|
from transformers import GPT2Tokenizer, BertTokenizer
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--type", default="gpt2", type=str, help="The type of tokenizer (bert|gpt2)")
|
|
parser.add_argument("--file", default=None, type=str, help="The file to encode")
|
|
parser.add_argument("--vocab", default=None, type=str, required=True, help="The vocab file")
|
|
parser.add_argument("--merges", default=None, type=str, help="The merges.txt file")
|
|
parser.add_argument("--debug", action="store_true", help="Verbose output")
|
|
args = parser.parse_args()
|
|
|
|
if args.type == "gpt2" and args.merges is None:
|
|
raise Exception("Expected merges.txt file")
|
|
|
|
if args.file is not None:
|
|
with open(args.file, "r") as fp:
|
|
text = [line.strip() for line in fp]
|
|
else:
|
|
text = """
|
|
The Zen of Python, by Tim Peters
|
|
Beautiful is better than ugly.
|
|
Explicit is better than implicit.
|
|
Simple is better than complex.
|
|
Complex is better than complicated.
|
|
Flat is better than nested.
|
|
Sparse is better than dense.
|
|
Readability counts.
|
|
Special cases aren't special enough to break the rules.
|
|
Although practicality beats purity.
|
|
Errors should never pass silently.
|
|
Unless explicitly silenced.
|
|
In the face of ambiguity, refuse the temptation to guess.
|
|
There should be one-- and preferably only one --obvious way to do it.
|
|
Although that way may not be obvious at first unless you're Dutch.
|
|
Now is better than never.
|
|
Although never is often better than *right* now.
|
|
If the implementation is hard to explain, it's a bad idea.
|
|
If the implementation is easy to explain, it may be a good idea.
|
|
Namespaces are one honking great idea -- let's do more of those!
|
|
""".split(
|
|
"\n"
|
|
)
|
|
|
|
if args.type == "gpt2":
|
|
print("Running GPT-2 tokenizer")
|
|
tok_p = GPT2Tokenizer.from_pretrained("gpt2")
|
|
|
|
# Create a Tokenizer using BPE
|
|
tok_r = Tokenizer(BPE.from_files(args.vocab, args.merges))
|
|
# Use ByteLevel Normalizer
|
|
tok_r.normalizer = normalizers.ByteLevel(add_prefix_space=False)
|
|
# Use ByteLevel PreTokenizer
|
|
tok_r.pre_tokenizer = pre_tokenizers.ByteLevel()
|
|
# Use ByteLevel Decoder
|
|
tok_r.decoder = decoders.ByteLevel()
|
|
elif args.type == "bert":
|
|
print("Running Bert tokenizer")
|
|
tok_p = BertTokenizer.from_pretrained(args.vocab)
|
|
|
|
tok_r = Tokenizer(
|
|
WordPiece.from_files(args.vocab, unk_token="[UNK]", max_input_chars_per_word=100)
|
|
)
|
|
tok_r.normalizer = BertNormalizer(
|
|
clean_text=True, handle_chinese_chars=True, strip_accents=True, lowercase=True,
|
|
)
|
|
# tok_r.pre_tokenizer = pre_tokenizers.Whitespace()
|
|
tok_r.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
|
|
tok_r.decoder = decoders.WordPiece()
|
|
tok_r.post_processor = BertProcessing(
|
|
("[SEP]", tok_r.token_to_id("[SEP]")), ("[CLS]", tok_r.token_to_id("[CLS]")),
|
|
)
|
|
else:
|
|
raise Exception(f"Unknown type {args.type}")
|
|
|
|
|
|
def tokenize_r():
|
|
return tok_r.encode_batch(text)
|
|
|
|
|
|
def tokenize_p():
|
|
return [tok_p.encode(sentence, add_special_tokens=True) for sentence in tqdm(text)]
|
|
|
|
|
|
print(f"Tokenizing {len(text)} lines")
|
|
|
|
# Rust version
|
|
start = time.time()
|
|
encoded_r = tokenize_r()
|
|
end = time.time()
|
|
time_r = end - start
|
|
print(f"Rust tokenizer took: {time_r} sec")
|
|
|
|
# Python version
|
|
start = time.time()
|
|
encoded_p = tokenize_p()
|
|
end = time.time()
|
|
time_p = end - start
|
|
print(f"Transformer tokenizer took: {time_p} sec")
|
|
|
|
print(f"SpeedUp Ratio: {time_p / time_r}")
|
|
|
|
ids_r = [sentence.ids for sentence in encoded_r]
|
|
diff_ids = 0
|
|
for i in range(0, len(encoded_r)):
|
|
if encoded_r[i].ids != encoded_p[i]:
|
|
diff_ids += 1
|
|
if args.debug:
|
|
print(encoded_r[i].ids)
|
|
print(encoded_p[i])
|
|
print(encoded_r[i].tokens)
|
|
print(tok_p.tokenize(text[i]))
|
|
print(text[i])
|
|
print("")
|
|
print(f"Ids differences: {diff_ids}")
|
|
|
|
decoded_r = tok_r.decode_batch([sentence.ids for sentence in encoded_r], False)
|
|
decoded_p = [tok_p.decode(en) for en in encoded_p]
|
|
diff_decoded = 0
|
|
for i in range(0, len(text)):
|
|
if decoded_r[i] != decoded_p[i]:
|
|
diff_decoded += 1
|
|
if args.debug:
|
|
print(f"Original: {text[i]}")
|
|
print(f"Rust: {decoded_r[i]}")
|
|
print(f"Python: {decoded_p[i]}")
|
|
print("")
|
|
print(f"Decoding differences: {diff_decoded}")
|