mirror of
https://github.com/mii443/tokenizers.git
synced 2025-12-07 13:18:31 +00:00
Tokenizers
A fast and easy to use implementation of today's most used tokenizers.
- High Level design: master
Installation
With pip:
pip install tokenizers
From sources:
To use this method, you need to have the Rust nightly toolchain installed.
# Install with:
curl https://sh.rustup.rs -sSf | sh -s -- -default-toolchain nightly-2019-11-01 -
export PATH="$HOME/.cargo/bin:$PATH"
# Or select the right toolchain:
rustup default nightly-2019-11-01
Once Rust is installed and using the right toolchain you can do the following.
git clone https://github.com/huggingface/tokenizers
cd tokenizers/bindings/python
# Create a virtual env (you can use yours as well)
python -m venv .env
source .env/bin/activate
# Install `tokenizers` in the current virtual env
pip install maturin
maturin develop --release
Usage
from tokenizers import Tokenizer, models, pre_tokenizers, decoders
# Load a BPE Model
vocab = "./path/to/vocab.json"
merges = "./path/to/merges.txt"
bpe = models.BPE.from_files(vocab, merges)
# Initialize a tokenizer
tokenizer = Tokenizer(bpe)
# Customize pre-tokenization and decoding
tokenizer.with_pre_tokenizer(pre_tokenizers.ByteLevel.new())
tokenizer.with_decoder(decoders.ByteLevel.new())
# And then tokenize:
encoded = tokenizer.encode("I can feel the magic, can you?")
print(encoded)
# Or tokenize multiple sentences at once:
encoded = tokenizer.encode_batch([
"I can feel the magic, can you?",
"The quick brown fox jumps over the lazy dog"
])
print(encoded)