Files
tokenizers/bindings/python/benches/test_tiktoken.py
2024-08-01 10:36:53 +02:00

126 lines
4.6 KiB
Python

import os
import time
import argparse
from datasets import load_dataset
from tiktoken.load import load_tiktoken_bpe
import tiktoken
from tokenizers import Tokenizer
from huggingface_hub import hf_hub_download
from typing import Tuple, List
from multiprocessing import Process
MODEL_ID = "meta-llama/Meta-Llama-3.1-8B"
DATASET = "facebook/xnli"
DATASET_CONFIG = "all_languages"
DEFAULT_THREADS = [2**i for i in range(8) if 2**i <= os.cpu_count()]
def format_byte_size(num_bytes: int) -> Tuple[str, str]:
"""Convert bytes to a human-readable format (KB, MB, GB)."""
num_bytes_f = float(num_bytes)
for unit in ["B", "KB", "MB", "GB", "TB"]:
if num_bytes_f < 1024:
return f"{num_bytes_f:.2f} {unit}", unit
num_bytes_f /= 1024
return f"{num_bytes_f:.2f} PB", "PB"
def benchmark_batch(model: str, documents: list[str], num_threads: int) -> None:
os.environ["RAYON_NUM_THREADS"] = str(num_threads)
num_bytes = sum(map(len, map(str.encode, documents)))
readable_size, unit = format_byte_size(num_bytes)
print(f"==============")
print(f"num_threads: {num_threads}, data size: {readable_size}, documents: {len(documents)}")
filename = hf_hub_download(MODEL_ID, "original/tokenizer.model")
mergeable_ranks = load_tiktoken_bpe(filename)
pat_str = r"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"
num_reserved_special_tokens = 256
special_tokens = [
"<|begin_of_text|>",
"<|end_of_text|>",
"<|reserved_special_token_0|>",
"<|reserved_special_token_1|>",
"<|reserved_special_token_2|>",
"<|reserved_special_token_3|>",
"<|start_header_id|>",
"<|end_header_id|>",
"<|reserved_special_token_4|>",
"<|eot_id|>", # end of turn
] + [
f"<|reserved_special_token_{i}|>"
for i in range(5, num_reserved_special_tokens - 5)
]
num_base_tokens = len(mergeable_ranks)
special_tokens = {
token: num_base_tokens + i for i, token in enumerate(special_tokens)
}
enc = tiktoken.Encoding(
name=model,
pat_str=pat_str,
mergeable_ranks=mergeable_ranks,
special_tokens=special_tokens,
)
enc.encode("warmup")
start = time.perf_counter_ns()
enc.encode_ordinary_batch(documents, num_threads=num_threads)
end = time.perf_counter_ns()
readable_size, unit = format_byte_size(num_bytes / (end - start) * 1e9)
print(f"tiktoken \t{readable_size} / s")
hf_enc = Tokenizer.from_pretrained(model)
hf_enc.encode("warmup")
start = time.perf_counter_ns()
hf_enc.encode_batch(documents)
end = time.perf_counter_ns()
readable_size, unit = format_byte_size(num_bytes / (end - start) * 1e9)
print(f"huggingface \t{readable_size} / s")
def test(model: str, dataset: str, dataset_config: str, threads: List[int]):
dataset_xnli = load_dataset(dataset, dataset_config)
input_lengths = [(10, False), (10_000, False), (10_000, True)] # Example input lengths
for num_threads in threads:
for length, fuse in input_lengths:
documents = []
for i, item in enumerate(dataset_xnli["train"]):
if i >= length:
break
documents.append("".join(item["premise"].values()))
if fuse:
documents=["".join(documents)]
# Rayon thread pool is global to a process, we need to launch
# separate processes in order to accurately use the correct number of threads.
# Otherwise, we're simply running tokenizers in whatever tests comes first.
# tokenizers does NOT provide a method to change the number of threads during
# runtime.
p = Process(target=benchmark_batch, args=(model, documents, num_threads))
p.start()
p.join()
# benchmark_batch(model, documents, num_threads)
def main():
parser = argparse.ArgumentParser(
prog='bench_tokenizer',
description='Getting a feel for speed when tokenizing',
)
parser.add_argument('-m', '--model', default=MODEL_ID, type=str)
parser.add_argument('-d', '--dataset', default=DATASET, type=str)
parser.add_argument('-ds', '--dataset-config', default=DATASET_CONFIG, type=str)
parser.add_argument('-t', '--threads', nargs='+', default=DEFAULT_THREADS, type=int)
args = parser.parse_args()
test(args.model, args.dataset, args.dataset_config, args.threads)
# Call the function to run the benchmark
if __name__ == "__main__":
main()