mirror of
https://github.com/mii443/tokenizers.git
synced 2025-08-23 00:35:35 +00:00
436 lines
14 KiB
Rust
436 lines
14 KiB
Rust
extern crate tokenizers as tk;
|
|
|
|
use pyo3::exceptions;
|
|
use pyo3::prelude::*;
|
|
use pyo3::types::*;
|
|
|
|
use super::decoders::Decoder;
|
|
use super::encoding::Encoding;
|
|
use super::error::{PyError, ToPyResult};
|
|
use super::models::Model;
|
|
use super::normalizers::Normalizer;
|
|
use super::pre_tokenizers::PreTokenizer;
|
|
use super::processors::PostProcessor;
|
|
use super::trainers::Trainer;
|
|
use super::utils::Container;
|
|
|
|
use tk::tokenizer::{
|
|
PaddingDirection, PaddingParams, PaddingStrategy, TruncationParams, TruncationStrategy,
|
|
};
|
|
|
|
#[pyclass(dict)]
|
|
pub struct AddedToken {
|
|
pub token: tk::tokenizer::AddedToken,
|
|
}
|
|
#[pymethods]
|
|
impl AddedToken {
|
|
#[new]
|
|
#[args(kwargs = "**")]
|
|
fn new(obj: &PyRawObject, content: &str, kwargs: Option<&PyDict>) -> PyResult<()> {
|
|
let mut token = tk::tokenizer::AddedToken::from(content.to_owned());
|
|
|
|
if let Some(kwargs) = kwargs {
|
|
for (key, value) in kwargs {
|
|
let key: &str = key.extract()?;
|
|
match key {
|
|
"single_word" => token = token.single_word(value.extract()?),
|
|
"lstrip" => token = token.lstrip(value.extract()?),
|
|
"rstrip" => token = token.rstrip(value.extract()?),
|
|
_ => println!("Ignored unknown kwarg option {}", key),
|
|
}
|
|
}
|
|
}
|
|
|
|
obj.init({ AddedToken { token } });
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[pyclass(dict)]
|
|
pub struct Tokenizer {
|
|
tokenizer: tk::tokenizer::Tokenizer,
|
|
}
|
|
|
|
#[pymethods]
|
|
impl Tokenizer {
|
|
#[new]
|
|
fn new(obj: &PyRawObject, model: &mut Model) -> PyResult<()> {
|
|
if let Some(model) = model.model.to_pointer() {
|
|
let tokenizer = tk::tokenizer::Tokenizer::new(model);
|
|
obj.init({ Tokenizer { tokenizer } });
|
|
Ok(())
|
|
} else {
|
|
Err(exceptions::Exception::py_err(
|
|
"The Model is already being used in another Tokenizer",
|
|
))
|
|
}
|
|
}
|
|
|
|
fn num_special_tokens_to_add(&self, is_pair: bool) -> PyResult<usize> {
|
|
Ok(self
|
|
.tokenizer
|
|
.get_post_processor()
|
|
.map_or(0, |p| p.as_ref().added_tokens(is_pair)))
|
|
}
|
|
|
|
#[args(kwargs = "**")]
|
|
fn get_vocab_size(&self, kwargs: Option<&PyDict>) -> PyResult<usize> {
|
|
let mut with_added_tokens = true;
|
|
|
|
if let Some(kwargs) = kwargs {
|
|
for (key, value) in kwargs {
|
|
let key: &str = key.extract()?;
|
|
match key {
|
|
"with_added_tokens" => with_added_tokens = value.extract()?,
|
|
_ => println!("Ignored unknown kwarg option {}", key),
|
|
}
|
|
}
|
|
}
|
|
|
|
Ok(self.tokenizer.get_vocab_size(with_added_tokens))
|
|
}
|
|
|
|
#[args(kwargs = "**")]
|
|
fn enable_truncation(&mut self, max_length: usize, kwargs: Option<&PyDict>) -> PyResult<()> {
|
|
let mut stride = 0;
|
|
let mut strategy = TruncationStrategy::LongestFirst;
|
|
|
|
if let Some(kwargs) = kwargs {
|
|
for (key, value) in kwargs {
|
|
let key: &str = key.extract()?;
|
|
match key {
|
|
"stride" => stride = value.extract()?,
|
|
"strategy" => {
|
|
let value: &str = value.extract()?;
|
|
strategy = match value {
|
|
"longest_first" => Ok(TruncationStrategy::LongestFirst),
|
|
"only_first" => Ok(TruncationStrategy::OnlyFirst),
|
|
"only_second" => Ok(TruncationStrategy::OnlySecond),
|
|
_ => Err(PyError(format!(
|
|
"Unknown `strategy`: `{}`. Use \
|
|
one of `longest_first`, `only_first`, or `only_second`",
|
|
value
|
|
))
|
|
.into_pyerr()),
|
|
}?
|
|
}
|
|
_ => println!("Ignored unknown kwarg option {}", key),
|
|
}
|
|
}
|
|
}
|
|
|
|
self.tokenizer.with_truncation(Some(TruncationParams {
|
|
max_length,
|
|
stride,
|
|
strategy,
|
|
}));
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn no_truncation(&mut self) {
|
|
self.tokenizer.with_truncation(None);
|
|
}
|
|
|
|
#[args(kwargs = "**")]
|
|
fn enable_padding(&mut self, kwargs: Option<&PyDict>) -> PyResult<()> {
|
|
let mut direction = PaddingDirection::Right;
|
|
let mut pad_id: u32 = 0;
|
|
let mut pad_type_id: u32 = 0;
|
|
let mut pad_token = String::from("[PAD]");
|
|
let mut max_length: Option<usize> = None;
|
|
|
|
if let Some(kwargs) = kwargs {
|
|
for (key, value) in kwargs {
|
|
let key: &str = key.extract()?;
|
|
match key {
|
|
"direction" => {
|
|
let value: &str = value.extract()?;
|
|
direction = match value {
|
|
"left" => Ok(PaddingDirection::Left),
|
|
"right" => Ok(PaddingDirection::Right),
|
|
other => Err(PyError(format!(
|
|
"Unknown `direction`: `{}`. Use \
|
|
one of `left` or `right`",
|
|
other
|
|
))
|
|
.into_pyerr()),
|
|
}?;
|
|
}
|
|
"pad_id" => pad_id = value.extract()?,
|
|
"pad_type_id" => pad_type_id = value.extract()?,
|
|
"pad_token" => pad_token = value.extract()?,
|
|
"max_length" => max_length = value.extract()?,
|
|
_ => println!("Ignored unknown kwarg option {}", key),
|
|
}
|
|
}
|
|
}
|
|
|
|
let strategy = if let Some(max_length) = max_length {
|
|
PaddingStrategy::Fixed(max_length)
|
|
} else {
|
|
PaddingStrategy::BatchLongest
|
|
};
|
|
|
|
self.tokenizer.with_padding(Some(PaddingParams {
|
|
strategy,
|
|
direction,
|
|
pad_id,
|
|
pad_type_id,
|
|
pad_token: pad_token.to_owned(),
|
|
}));
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn no_padding(&mut self) {
|
|
self.tokenizer.with_padding(None);
|
|
}
|
|
|
|
fn normalize(&self, sentence: &str) -> PyResult<String> {
|
|
ToPyResult(
|
|
self.tokenizer
|
|
.normalize(sentence)
|
|
.map(|s| s.get().to_owned()),
|
|
)
|
|
.into()
|
|
}
|
|
|
|
#[args(add_special_tokens = true)]
|
|
fn encode(
|
|
&self,
|
|
sentence: &str,
|
|
pair: Option<&str>,
|
|
add_special_tokens: bool,
|
|
) -> PyResult<Encoding> {
|
|
ToPyResult(
|
|
self.tokenizer
|
|
.encode(
|
|
if let Some(pair) = pair {
|
|
tk::tokenizer::EncodeInput::Dual(sentence.to_owned(), pair.to_owned())
|
|
} else {
|
|
tk::tokenizer::EncodeInput::Single(sentence.to_owned())
|
|
},
|
|
add_special_tokens,
|
|
)
|
|
.map(Encoding::new),
|
|
)
|
|
.into()
|
|
}
|
|
|
|
#[args(add_special_tokens = true)]
|
|
fn encode_batch(
|
|
&self,
|
|
sentences: &PyList,
|
|
add_special_tokens: bool,
|
|
) -> PyResult<Vec<Encoding>> {
|
|
let inputs = sentences
|
|
.into_iter()
|
|
.map(|item| {
|
|
if let Ok(s1) = item.extract::<String>() {
|
|
Ok(tk::tokenizer::EncodeInput::Single(s1))
|
|
} else if let Ok((s1, s2)) = item.extract::<(String, String)>() {
|
|
Ok(tk::tokenizer::EncodeInput::Dual(s1, s2))
|
|
} else {
|
|
Err(exceptions::Exception::py_err(
|
|
"Input must be a list[str] or list[(str, str)]",
|
|
))
|
|
}
|
|
})
|
|
.collect::<PyResult<Vec<_>>>()?;
|
|
|
|
ToPyResult(
|
|
self.tokenizer
|
|
.encode_batch(inputs, add_special_tokens)
|
|
.map(|encodings| encodings.into_iter().map(Encoding::new).collect()),
|
|
)
|
|
.into()
|
|
}
|
|
|
|
fn decode(&self, ids: Vec<u32>, skip_special_tokens: Option<bool>) -> PyResult<String> {
|
|
ToPyResult(
|
|
self.tokenizer
|
|
.decode(ids, skip_special_tokens.unwrap_or(true)),
|
|
)
|
|
.into()
|
|
}
|
|
|
|
fn decode_batch(
|
|
&self,
|
|
sentences: Vec<Vec<u32>>,
|
|
skip_special_tokens: Option<bool>,
|
|
) -> PyResult<Vec<String>> {
|
|
ToPyResult(
|
|
self.tokenizer
|
|
.decode_batch(sentences, skip_special_tokens.unwrap_or(true)),
|
|
)
|
|
.into()
|
|
}
|
|
|
|
fn token_to_id(&self, token: &str) -> Option<u32> {
|
|
self.tokenizer.token_to_id(token)
|
|
}
|
|
|
|
fn id_to_token(&self, id: u32) -> Option<String> {
|
|
self.tokenizer.id_to_token(id)
|
|
}
|
|
|
|
fn add_tokens(&mut self, tokens: &PyList) -> PyResult<usize> {
|
|
let tokens = tokens
|
|
.into_iter()
|
|
.map(|token| {
|
|
if let Ok(content) = token.extract::<String>() {
|
|
Ok(tk::tokenizer::AddedToken {
|
|
content,
|
|
..Default::default()
|
|
})
|
|
} else if let Ok(token) = token.cast_as::<AddedToken>() {
|
|
Ok(token.token.clone())
|
|
} else {
|
|
Err(exceptions::Exception::py_err(
|
|
"Input must be a List[Union[str, AddedToken]]",
|
|
))
|
|
}
|
|
})
|
|
.collect::<PyResult<Vec<_>>>()?;
|
|
|
|
Ok(self.tokenizer.add_tokens(&tokens))
|
|
}
|
|
|
|
fn add_special_tokens(&mut self, tokens: &PyList) -> PyResult<usize> {
|
|
let tokens = tokens
|
|
.into_iter()
|
|
.map(|token| {
|
|
if let Ok(content) = token.extract::<String>() {
|
|
Ok(tk::tokenizer::AddedToken {
|
|
content,
|
|
..Default::default()
|
|
})
|
|
} else if let Ok(token) = token.cast_as::<AddedToken>() {
|
|
Ok(token.token.clone())
|
|
} else {
|
|
Err(exceptions::Exception::py_err(
|
|
"Input must be a List[Union[str, AddedToken]]",
|
|
))
|
|
}
|
|
})
|
|
.collect::<PyResult<Vec<_>>>()?;
|
|
|
|
Ok(self.tokenizer.add_special_tokens(&tokens))
|
|
}
|
|
|
|
fn train(&mut self, trainer: &Trainer, files: Vec<String>) -> PyResult<()> {
|
|
trainer.trainer.execute(|trainer| {
|
|
if let Err(e) = self.tokenizer.train(trainer, files) {
|
|
Err(exceptions::Exception::py_err(format!("{}", e)))
|
|
} else {
|
|
Ok(())
|
|
}
|
|
})
|
|
}
|
|
|
|
#[getter]
|
|
fn get_model(&self) -> PyResult<Model> {
|
|
Ok(Model {
|
|
model: Container::from_ref(self.tokenizer.get_model()),
|
|
})
|
|
}
|
|
|
|
#[setter]
|
|
fn set_model(&mut self, model: &mut Model) -> PyResult<()> {
|
|
if let Some(model) = model.model.to_pointer() {
|
|
self.tokenizer.with_model(model);
|
|
Ok(())
|
|
} else {
|
|
Err(exceptions::Exception::py_err(
|
|
"The Model is already being used in another Tokenizer",
|
|
))
|
|
}
|
|
}
|
|
|
|
#[getter]
|
|
fn get_normalizer(&self) -> PyResult<Option<Normalizer>> {
|
|
Ok(self
|
|
.tokenizer
|
|
.get_normalizer()
|
|
.map(|normalizer| Normalizer {
|
|
normalizer: Container::from_ref(normalizer),
|
|
}))
|
|
}
|
|
|
|
#[setter]
|
|
fn set_normalizer(&mut self, normalizer: &mut Normalizer) -> PyResult<()> {
|
|
if let Some(normalizer) = normalizer.normalizer.to_pointer() {
|
|
self.tokenizer.with_normalizer(normalizer);
|
|
Ok(())
|
|
} else {
|
|
Err(exceptions::Exception::py_err(
|
|
"The Normalizer is already being used in another Tokenizer",
|
|
))
|
|
}
|
|
}
|
|
|
|
#[getter]
|
|
fn get_pre_tokenizer(&self) -> PyResult<Option<PreTokenizer>> {
|
|
Ok(self
|
|
.tokenizer
|
|
.get_pre_tokenizer()
|
|
.map(|pretok| PreTokenizer {
|
|
pretok: Container::from_ref(pretok),
|
|
}))
|
|
}
|
|
|
|
#[setter]
|
|
fn set_pre_tokenizer(&mut self, pretok: &mut PreTokenizer) -> PyResult<()> {
|
|
if let Some(pretok) = pretok.pretok.to_pointer() {
|
|
self.tokenizer.with_pre_tokenizer(pretok);
|
|
Ok(())
|
|
} else {
|
|
Err(exceptions::Exception::py_err(
|
|
"The PreTokenizer is already being used in another Tokenizer",
|
|
))
|
|
}
|
|
}
|
|
|
|
#[getter]
|
|
fn get_post_processor(&self) -> PyResult<Option<PostProcessor>> {
|
|
Ok(self
|
|
.tokenizer
|
|
.get_post_processor()
|
|
.map(|processor| PostProcessor {
|
|
processor: Container::from_ref(processor),
|
|
}))
|
|
}
|
|
|
|
#[setter]
|
|
fn set_post_processor(&mut self, processor: &mut PostProcessor) -> PyResult<()> {
|
|
if let Some(processor) = processor.processor.to_pointer() {
|
|
self.tokenizer.with_post_processor(processor);
|
|
Ok(())
|
|
} else {
|
|
Err(exceptions::Exception::py_err(
|
|
"The Processor is already being used in another Tokenizer",
|
|
))
|
|
}
|
|
}
|
|
|
|
#[getter]
|
|
fn get_decoder(&self) -> PyResult<Option<Decoder>> {
|
|
Ok(self.tokenizer.get_decoder().map(|decoder| Decoder {
|
|
decoder: Container::from_ref(decoder),
|
|
}))
|
|
}
|
|
|
|
#[setter]
|
|
fn set_decoder(&mut self, decoder: &mut Decoder) -> PyResult<()> {
|
|
if let Some(decoder) = decoder.decoder.to_pointer() {
|
|
self.tokenizer.with_decoder(decoder);
|
|
Ok(())
|
|
} else {
|
|
Err(exceptions::Exception::py_err(
|
|
"The Decoder is already being used in another Tokenizer",
|
|
))
|
|
}
|
|
}
|
|
}
|