mirror of
https://github.com/mii443/tokenizers.git
synced 2025-08-22 16:25:30 +00:00
Bumps [minimatch](https://github.com/isaacs/minimatch) from 3.0.4 to 3.1.2. - [Release notes](https://github.com/isaacs/minimatch/releases) - [Changelog](https://github.com/isaacs/minimatch/blob/main/changelog.md) - [Commits](https://github.com/isaacs/minimatch/compare/v3.0.4...v3.1.2) --- updated-dependencies: - dependency-name: minimatch dependency-type: indirect ... Signed-off-by: dependabot[bot] <support@github.com> Signed-off-by: dependabot[bot] <support@github.com> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
NodeJS implementation of today's most used tokenizers, with a focus on performance and versatility. Bindings over the Rust implementation. If you are interested in the High-level design, you can go check it there.
Main features
- Train new vocabularies and tokenize using 4 pre-made tokenizers (Bert WordPiece and the 3 most common BPE versions).
- Extremely fast (both training and tokenization), thanks to the Rust implementation. Takes less than 20 seconds to tokenize a GB of text on a server's CPU.
- Easy to use, but also extremely versatile.
- Designed for research and production.
- Normalization comes with alignments tracking. It's always possible to get the part of the original sentence that corresponds to a given token.
- Does all the pre-processing: Truncate, Pad, add the special tokens your model needs.
Installation
npm install tokenizers@latest
Basic example
import { BertWordPieceTokenizer } from "tokenizers";
const wordPieceTokenizer = await BertWordPieceTokenizer.fromOptions({ vocabFile: "./vocab.txt" });
const wpEncoded = await wordPieceTokenizer.encode("Who is John?", "John is a teacher");
console.log(wpEncoded.length);
console.log(wpEncoded.tokens);
console.log(wpEncoded.ids);
console.log(wpEncoded.attentionMask);
console.log(wpEncoded.offsets);
console.log(wpEncoded.overflowing);
console.log(wpEncoded.specialTokensMask);
console.log(wpEncoded.typeIds);
console.log(wpEncoded.wordIndexes);
Provided Tokenizers
BPETokenizer
: The original BPEByteLevelBPETokenizer
: The byte level version of the BPESentencePieceBPETokenizer
: A BPE implementation compatible with the one used by SentencePieceBertWordPieceTokenizer
: The famous Bert tokenizer, using WordPiece