Files
tokenizers/bindings/python/src/tokenizer.rs
2020-05-01 17:11:54 -04:00

537 lines
16 KiB
Rust

extern crate tokenizers as tk;
use pyo3::exceptions;
use pyo3::prelude::*;
use pyo3::types::*;
use pyo3::PyObjectProtocol;
use std::collections::HashMap;
use super::decoders::Decoder;
use super::encoding::Encoding;
use super::error::{PyError, ToPyResult};
use super::models::Model;
use super::normalizers::Normalizer;
use super::pre_tokenizers::PreTokenizer;
use super::processors::PostProcessor;
use super::trainers::Trainer;
use super::utils::Container;
use tk::tokenizer::{
PaddingDirection, PaddingParams, PaddingStrategy, TruncationParams, TruncationStrategy,
};
#[pyclass(dict)]
pub struct AddedToken {
pub token: tk::tokenizer::AddedToken,
}
#[pymethods]
impl AddedToken {
#[new]
#[args(kwargs = "**")]
fn new(content: &str, kwargs: Option<&PyDict>) -> PyResult<Self> {
let mut token = tk::tokenizer::AddedToken::from(content.to_owned());
if let Some(kwargs) = kwargs {
for (key, value) in kwargs {
let key: &str = key.extract()?;
match key {
"single_word" => token = token.single_word(value.extract()?),
"lstrip" => token = token.lstrip(value.extract()?),
"rstrip" => token = token.rstrip(value.extract()?),
_ => println!("Ignored unknown kwarg option {}", key),
}
}
}
Ok(AddedToken { token })
}
#[getter]
fn get_content(&self) -> &str {
&self.token.content
}
#[getter]
fn get_rstrip(&self) -> bool {
self.token.rstrip
}
#[getter]
fn get_lstrip(&self) -> bool {
self.token.lstrip
}
#[getter]
fn get_single_word(&self) -> bool {
self.token.single_word
}
}
#[pyproto]
impl PyObjectProtocol for AddedToken {
fn __str__(&'p self) -> PyResult<&'p str> {
Ok(&self.token.content)
}
fn __repr__(&self) -> PyResult<String> {
let bool_to_python = |p| match p {
true => "True",
false => "False",
};
Ok(format!(
"AddedToken(\"{}\", rstrip={}, lstrip={}, single_word={})",
self.token.content,
bool_to_python(self.token.rstrip),
bool_to_python(self.token.lstrip),
bool_to_python(self.token.single_word)
))
}
}
#[pyclass]
struct InputSequence {
sequence: tk::InputSequence,
}
impl FromPyObject<'_> for InputSequence {
fn extract(ob: &PyAny) -> PyResult<Self> {
let err = exceptions::ValueError::py_err("InputSequence must be Union[str, List[str]]");
if let Ok(s) = ob.downcast::<PyString>() {
let seq: String = s.extract().map_err(|_| err)?;
Ok(Self {
sequence: seq.into(),
})
} else if let Ok(s) = ob.downcast::<PyList>() {
let seq = s.extract::<Vec<String>>().map_err(|_| err)?;
Ok(Self {
sequence: seq.into(),
})
} else {
Err(err)
}
}
}
impl From<InputSequence> for tk::InputSequence {
fn from(s: InputSequence) -> Self {
s.sequence
}
}
#[pyclass]
struct EncodeInput {
input: tk::EncodeInput,
}
impl FromPyObject<'_> for EncodeInput {
fn extract(ob: &PyAny) -> PyResult<Self> {
let err = exceptions::ValueError::py_err(
"EncodeInput must be Union[InputSequence, Tuple[InputSequence, InputSequence]]",
);
let gil = Python::acquire_gil();
let py = gil.python();
let obj = ob.to_object(py);
if let Ok(i) = obj.extract::<InputSequence>(py) {
Ok(Self { input: i.into() })
} else if let Ok((i1, i2)) = obj.extract::<(InputSequence, InputSequence)>(py) {
Ok(Self {
input: (i1, i2).into(),
})
} else {
Err(err)
}
}
}
impl From<EncodeInput> for tk::tokenizer::EncodeInput {
fn from(i: EncodeInput) -> Self {
i.input
}
}
#[pyclass(dict)]
pub struct Tokenizer {
tokenizer: tk::tokenizer::Tokenizer,
}
#[pymethods]
impl Tokenizer {
#[new]
fn new(mut model: PyRefMut<Model>) -> PyResult<Self> {
if let Some(model) = model.model.to_pointer() {
let tokenizer = tk::tokenizer::Tokenizer::new(model);
Ok(Tokenizer { tokenizer })
} else {
Err(exceptions::Exception::py_err(
"The Model is already being used in another Tokenizer",
))
}
}
fn num_special_tokens_to_add(&self, is_pair: bool) -> PyResult<usize> {
Ok(self
.tokenizer
.get_post_processor()
.map_or(0, |p| p.as_ref().added_tokens(is_pair)))
}
#[args(with_added_tokens = true)]
fn get_vocab(&self, with_added_tokens: bool) -> PyResult<HashMap<String, u32>> {
Ok(self.tokenizer.get_vocab(with_added_tokens))
}
#[args(with_added_tokens = true)]
fn get_vocab_size(&self, with_added_tokens: bool) -> PyResult<usize> {
Ok(self.tokenizer.get_vocab_size(with_added_tokens))
}
#[args(kwargs = "**")]
fn enable_truncation(&mut self, max_length: usize, kwargs: Option<&PyDict>) -> PyResult<()> {
let mut stride = 0;
let mut strategy = TruncationStrategy::LongestFirst;
if let Some(kwargs) = kwargs {
for (key, value) in kwargs {
let key: &str = key.extract()?;
match key {
"stride" => stride = value.extract()?,
"strategy" => {
let value: &str = value.extract()?;
strategy = match value {
"longest_first" => Ok(TruncationStrategy::LongestFirst),
"only_first" => Ok(TruncationStrategy::OnlyFirst),
"only_second" => Ok(TruncationStrategy::OnlySecond),
_ => Err(PyError(format!(
"Unknown `strategy`: `{}`. Use \
one of `longest_first`, `only_first`, or `only_second`",
value
))
.into_pyerr()),
}?
}
_ => println!("Ignored unknown kwarg option {}", key),
}
}
}
self.tokenizer.with_truncation(Some(TruncationParams {
max_length,
stride,
strategy,
}));
Ok(())
}
fn no_truncation(&mut self) {
self.tokenizer.with_truncation(None);
}
#[args(kwargs = "**")]
fn enable_padding(&mut self, kwargs: Option<&PyDict>) -> PyResult<()> {
let mut direction = PaddingDirection::Right;
let mut pad_id: u32 = 0;
let mut pad_type_id: u32 = 0;
let mut pad_token = String::from("[PAD]");
let mut max_length: Option<usize> = None;
if let Some(kwargs) = kwargs {
for (key, value) in kwargs {
let key: &str = key.extract()?;
match key {
"direction" => {
let value: &str = value.extract()?;
direction = match value {
"left" => Ok(PaddingDirection::Left),
"right" => Ok(PaddingDirection::Right),
other => Err(PyError(format!(
"Unknown `direction`: `{}`. Use \
one of `left` or `right`",
other
))
.into_pyerr()),
}?;
}
"pad_id" => pad_id = value.extract()?,
"pad_type_id" => pad_type_id = value.extract()?,
"pad_token" => pad_token = value.extract()?,
"max_length" => max_length = value.extract()?,
_ => println!("Ignored unknown kwarg option {}", key),
}
}
}
let strategy = if let Some(max_length) = max_length {
PaddingStrategy::Fixed(max_length)
} else {
PaddingStrategy::BatchLongest
};
self.tokenizer.with_padding(Some(PaddingParams {
strategy,
direction,
pad_id,
pad_type_id,
pad_token: pad_token.to_owned(),
}));
Ok(())
}
fn no_padding(&mut self) {
self.tokenizer.with_padding(None);
}
fn normalize(&self, sentence: &str) -> PyResult<String> {
ToPyResult(
self.tokenizer
.normalize(sentence)
.map(|s| s.get().to_owned()),
)
.into()
}
/// Input can be:
/// encode("A single sequence")
/// encode(("A sequence", "And its pair"))
/// encode([ "A", "pre", "tokenized", "sequence" ])
/// encode(([ "A", "pre", "tokenized", "sequence" ], "And its pair"))
#[args(add_special_tokens = true)]
fn encode(&self, input: EncodeInput, add_special_tokens: bool) -> PyResult<Encoding> {
ToPyResult(
self.tokenizer
.encode(input, add_special_tokens)
.map(Encoding::new),
)
.into()
}
/// Input can be:
/// encode_batch([
/// "A single sequence",
/// ("A tuple with a sequence", "And its pair"),
/// [ "A", "pre", "tokenized", "sequence" ],
/// ([ "A", "pre", "tokenized", "sequence" ], "And its pair")
/// ])
#[args(add_special_tokens = true)]
fn encode_batch(
&self,
input: Vec<EncodeInput>,
add_special_tokens: bool,
) -> PyResult<Vec<Encoding>> {
ToPyResult(
self.tokenizer
.encode_batch(input, add_special_tokens)
.map(|encodings| encodings.into_iter().map(Encoding::new).collect()),
)
.into()
}
fn decode(&self, ids: Vec<u32>, skip_special_tokens: Option<bool>) -> PyResult<String> {
ToPyResult(
self.tokenizer
.decode(ids, skip_special_tokens.unwrap_or(true)),
)
.into()
}
fn decode_batch(
&self,
sentences: Vec<Vec<u32>>,
skip_special_tokens: Option<bool>,
) -> PyResult<Vec<String>> {
ToPyResult(
self.tokenizer
.decode_batch(sentences, skip_special_tokens.unwrap_or(true)),
)
.into()
}
fn token_to_id(&self, token: &str) -> Option<u32> {
self.tokenizer.token_to_id(token)
}
fn id_to_token(&self, id: u32) -> Option<String> {
self.tokenizer.id_to_token(id)
}
fn add_tokens(&mut self, tokens: &PyList) -> PyResult<usize> {
let tokens = tokens
.into_iter()
.map(|token| {
if let Ok(content) = token.extract::<String>() {
Ok(tk::tokenizer::AddedToken {
content,
..Default::default()
})
} else if let Ok(token) = token.extract::<PyRef<AddedToken>>() {
Ok(token.token.clone())
} else {
Err(exceptions::Exception::py_err(
"Input must be a List[Union[str, AddedToken]]",
))
}
})
.collect::<PyResult<Vec<_>>>()?;
Ok(self.tokenizer.add_tokens(&tokens))
}
fn add_special_tokens(&mut self, tokens: &PyList) -> PyResult<usize> {
let tokens = tokens
.into_iter()
.map(|token| {
if let Ok(content) = token.extract::<String>() {
Ok(tk::tokenizer::AddedToken {
content,
..Default::default()
})
} else if let Ok(token) = token.extract::<PyRef<AddedToken>>() {
Ok(token.token.clone())
} else {
Err(exceptions::Exception::py_err(
"Input must be a List[Union[str, AddedToken]]",
))
}
})
.collect::<PyResult<Vec<_>>>()?;
Ok(self.tokenizer.add_special_tokens(&tokens))
}
fn train(&mut self, trainer: &Trainer, files: Vec<String>) -> PyResult<()> {
trainer.trainer.execute(|trainer| {
if let Err(e) = self.tokenizer.train(trainer, files) {
Err(exceptions::Exception::py_err(format!("{}", e)))
} else {
Ok(())
}
})
}
#[args(pair = "None", add_special_tokens = true)]
fn post_process(
&self,
encoding: &Encoding,
pair: Option<&Encoding>,
add_special_tokens: bool,
) -> PyResult<Encoding> {
ToPyResult(
self.tokenizer
.post_process(
encoding.encoding.clone(),
pair.map(|p| p.encoding.clone()),
add_special_tokens,
)
.map(Encoding::new),
)
.into()
}
#[getter]
fn get_model(&self) -> PyResult<Model> {
Ok(Model {
model: Container::from_ref(self.tokenizer.get_model()),
})
}
#[setter]
fn set_model(&mut self, mut model: PyRefMut<Model>) -> PyResult<()> {
if let Some(model) = model.model.to_pointer() {
self.tokenizer.with_model(model);
Ok(())
} else {
Err(exceptions::Exception::py_err(
"The Model is already being used in another Tokenizer",
))
}
}
#[getter]
fn get_normalizer(&self) -> PyResult<Option<Normalizer>> {
Ok(self
.tokenizer
.get_normalizer()
.map(|normalizer| Normalizer {
normalizer: Container::from_ref(normalizer),
}))
}
#[setter]
fn set_normalizer(&mut self, mut normalizer: PyRefMut<Normalizer>) -> PyResult<()> {
if let Some(normalizer) = normalizer.normalizer.to_pointer() {
self.tokenizer.with_normalizer(normalizer);
Ok(())
} else {
Err(exceptions::Exception::py_err(
"The Normalizer is already being used in another Tokenizer",
))
}
}
#[getter]
fn get_pre_tokenizer(&self) -> PyResult<Option<PreTokenizer>> {
Ok(self
.tokenizer
.get_pre_tokenizer()
.map(|pretok| PreTokenizer {
pretok: Container::from_ref(pretok),
}))
}
#[setter]
fn set_pre_tokenizer(&mut self, mut pretok: PyRefMut<PreTokenizer>) -> PyResult<()> {
if let Some(pretok) = pretok.pretok.to_pointer() {
self.tokenizer.with_pre_tokenizer(pretok);
Ok(())
} else {
Err(exceptions::Exception::py_err(
"The PreTokenizer is already being used in another Tokenizer",
))
}
}
#[getter]
fn get_post_processor(&self) -> PyResult<Option<PostProcessor>> {
Ok(self
.tokenizer
.get_post_processor()
.map(|processor| PostProcessor {
processor: Container::from_ref(processor),
}))
}
#[setter]
fn set_post_processor(&mut self, mut processor: PyRefMut<PostProcessor>) -> PyResult<()> {
if let Some(processor) = processor.processor.to_pointer() {
self.tokenizer.with_post_processor(processor);
Ok(())
} else {
Err(exceptions::Exception::py_err(
"The Processor is already being used in another Tokenizer",
))
}
}
#[getter]
fn get_decoder(&self) -> PyResult<Option<Decoder>> {
Ok(self.tokenizer.get_decoder().map(|decoder| Decoder {
decoder: Container::from_ref(decoder),
}))
}
#[setter]
fn set_decoder(&mut self, mut decoder: PyRefMut<Decoder>) -> PyResult<()> {
if let Some(decoder) = decoder.decoder.to_pointer() {
self.tokenizer.with_decoder(decoder);
Ok(())
} else {
Err(exceptions::Exception::py_err(
"The Decoder is already being used in another Tokenizer",
))
}
}
}