Files
tokenizers/bindings/python/tests/utils.py
Nicolas Patry 816632c9fa Removing --release compat test.
- Leaving the one that checks that sampling follows the expected
distribution.
- Marking the python Unigram.train(..) test as slow
- The python Unigram.train(..) test now uses `big.txt` file.
2020-09-02 13:38:14 -04:00

97 lines
2.8 KiB
Python

import multiprocessing as mp
import os
import requests
import pytest
DATA_PATH = os.path.join("tests", "data")
def download(url):
filename = url.rsplit("/")[-1]
filepath = os.path.join(DATA_PATH, filename)
if not os.path.exists(filepath):
with open(filepath, "wb") as f:
response = requests.get(url, stream=True)
response.raise_for_status()
for chunk in response.iter_content(1024):
f.write(chunk)
return filepath
@pytest.fixture(scope="session")
def data_dir():
assert os.getcwd().endswith("python")
exist = os.path.exists(DATA_PATH) and os.path.isdir(DATA_PATH)
if not exist:
os.mkdir(DATA_PATH)
@pytest.fixture(scope="session")
def roberta_files(data_dir):
return {
"vocab": download(
"https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-vocab.json"
),
"merges": download(
"https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-merges.txt"
),
}
@pytest.fixture(scope="session")
def bert_files(data_dir):
return {
"vocab": download(
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt"
),
}
@pytest.fixture(scope="session")
def openai_files(data_dir):
return {
"vocab": download(
"https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-vocab.json"
),
"merges": download(
"https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-merges.txt"
),
}
@pytest.fixture(scope="session")
def train_files(data_dir):
return {
"big": download("https://norvig.com/big.txt"),
}
def multiprocessing_with_parallelism(tokenizer, enabled: bool):
"""
This helper can be used to test that disabling parallelism avoids dead locks when the
same tokenizer is used after forking.
"""
# It's essential to this test that we call 'encode' or 'encode_batch'
# before the fork. This causes the main process to "lock" some resources
# provided by the Rust "rayon" crate that are needed for parallel processing.
tokenizer.encode("Hi")
tokenizer.encode_batch(["hi", "there"])
def encode(tokenizer):
tokenizer.encode("Hi")
tokenizer.encode_batch(["hi", "there"])
# Make sure this environment variable is set before the fork happens
os.environ["TOKENIZERS_PARALLELISM"] = str(enabled)
p = mp.Process(target=encode, args=(tokenizer,))
p.start()
p.join(timeout=1)
# At this point the process should have successfully exited, depending on whether parallelism
# was activated or not. So we check the status and kill it if needed
alive = p.is_alive()
if alive:
p.terminate()
assert (alive and mp.get_start_method() == "fork") == enabled