Files
tokenizers/bindings/python/examples/train_bytelevel_bpe.py
2020-01-14 12:00:50 +01:00

55 lines
1.5 KiB
Python

import argparse
import glob
from os.path import join
from tokenizers import ByteLevelBPETokenizer
parser = argparse.ArgumentParser()
parser.add_argument("--files",
default=None,
metavar="path",
type=str,
required=True,
help="The files to use as training; accept '**/*.txt' type of patterns \
if enclosed in quotes")
parser.add_argument("--out",
default="./",
type=str,
help="Path to the output directory, where the files will be saved")
parser.add_argument("--name",
default="bpe-bytelevel",
type=str,
help="The name of the output vocab files")
args = parser.parse_args()
files = glob.glob(args.files)
if not files:
print(f"File does not exist: {args.files}")
exit(1)
# Initialize an empty tokenizer
tokenizer = ByteLevelBPETokenizer(add_prefix_space=True)
# And then train
tokenizer.train(
files,
vocab_size=10000,
min_frequency=2,
show_progress=True,
special_tokens=["<s>", "<pad>", "</s>"],
)
# Save the files
tokenizer.save(args.out, args.name)
# Restoring model from learned vocab/merges
tokenizer = ByteLevelBPETokenizer(
join(args.out, "{}-vocab.json".format(args.name)),
join(args.out, "{}-merges.txt".format(args.name)),
add_prefix_space=True
)
# Test encoding
print(tokenizer.encode("Training ByteLevel BPE is very easy").tokens)