Files
tokenizers/bindings/python/tests/implementations/test_char_bpe.py
Nicolas Patry 6113666624 Updating python formatting. (#1079)
* Updating python formatting.

* Forgot gh action.

* Skipping isort to prevent circular imports.

* Updating stub.

* Removing `isort` (it contradicts `stub.py`).

* Fixing weird stub black/isort disagreeement.
2022-10-05 15:29:33 +02:00

61 lines
2.3 KiB
Python

import pytest
from tokenizers import CharBPETokenizer
from ..utils import data_dir, multiprocessing_with_parallelism, openai_files
class TestCharBPETokenizer:
def test_basic_encode(self, openai_files):
tokenizer = CharBPETokenizer.from_file(openai_files["vocab"], openai_files["merges"])
output = tokenizer.encode("My name is John", "pair")
assert output.ids == [0, 253, 1362, 544, 0, 7, 12662, 2688]
assert output.tokens == [
"<unk>",
"y</w>",
"name</w>",
"is</w>",
"<unk>",
"o",
"hn</w>",
"pair</w>",
]
assert output.offsets == [
(0, 1),
(1, 2),
(3, 7),
(8, 10),
(11, 12),
(12, 13),
(13, 15),
(0, 4),
]
assert output.type_ids == [0, 0, 0, 0, 0, 0, 0, 1]
def test_lowercase(self, openai_files):
tokenizer = CharBPETokenizer.from_file(openai_files["vocab"], openai_files["merges"], lowercase=True)
output = tokenizer.encode("My name is John", "pair", add_special_tokens=False)
assert output.ids == [547, 1362, 544, 2476, 2688]
assert output.tokens == ["my</w>", "name</w>", "is</w>", "john</w>", "pair</w>"]
assert output.offsets == [(0, 2), (3, 7), (8, 10), (11, 15), (0, 4)]
assert output.type_ids == [0, 0, 0, 0, 1]
def test_decoding(self, openai_files):
tokenizer = CharBPETokenizer.from_file(openai_files["vocab"], openai_files["merges"], lowercase=True)
decoded = tokenizer.decode(tokenizer.encode("my name is john").ids)
assert decoded == "my name is john"
def test_multiprocessing_with_parallelism(self, openai_files):
tokenizer = CharBPETokenizer.from_file(openai_files["vocab"], openai_files["merges"])
multiprocessing_with_parallelism(tokenizer, False)
multiprocessing_with_parallelism(tokenizer, True)
def test_train_from_iterator(self):
text = ["A first sentence", "Another sentence", "And a last one"]
tokenizer = CharBPETokenizer()
tokenizer.train_from_iterator(text, show_progress=False)
output = tokenizer.encode("A sentence")
assert output.tokens == ["A</w>", "sentence</w>"]