Files
tokenizers/bindings/python/src/processors.rs
mert-kurttutan 5c18ec5ff5 pyo3 v0.18 migration (#1173)
* pyo v0.18 migration

* Fix formatting issues of black
2023-03-08 11:27:47 +01:00

511 lines
18 KiB
Rust

use std::convert::TryInto;
use std::sync::Arc;
use pyo3::exceptions;
use pyo3::prelude::*;
use pyo3::types::*;
use crate::encoding::PyEncoding;
use crate::error::ToPyResult;
use serde::{Deserialize, Serialize};
use tk::processors::bert::BertProcessing;
use tk::processors::byte_level::ByteLevel;
use tk::processors::roberta::RobertaProcessing;
use tk::processors::sequence::Sequence;
use tk::processors::template::{SpecialToken, Template};
use tk::processors::PostProcessorWrapper;
use tk::{Encoding, PostProcessor};
use tokenizers as tk;
/// Base class for all post-processors
///
/// This class is not supposed to be instantiated directly. Instead, any implementation of
/// a PostProcessor will return an instance of this class when instantiated.
#[pyclass(
dict,
module = "tokenizers.processors",
name = "PostProcessor",
subclass
)]
#[derive(Clone, Deserialize, Serialize)]
pub struct PyPostProcessor {
#[serde(flatten)]
pub processor: Arc<PostProcessorWrapper>,
}
impl PyPostProcessor {
pub fn new(processor: Arc<PostProcessorWrapper>) -> Self {
PyPostProcessor { processor }
}
pub(crate) fn get_as_subtype(&self, py: Python<'_>) -> PyResult<PyObject> {
let base = self.clone();
Ok(match self.processor.as_ref() {
PostProcessorWrapper::ByteLevel(_) => Py::new(py, (PyByteLevel {}, base))?.into_py(py),
PostProcessorWrapper::Bert(_) => Py::new(py, (PyBertProcessing {}, base))?.into_py(py),
PostProcessorWrapper::Roberta(_) => {
Py::new(py, (PyRobertaProcessing {}, base))?.into_py(py)
}
PostProcessorWrapper::Template(_) => {
Py::new(py, (PyTemplateProcessing {}, base))?.into_py(py)
}
PostProcessorWrapper::Sequence(_) => Py::new(py, (PySequence {}, base))?.into_py(py),
})
}
}
impl PostProcessor for PyPostProcessor {
fn added_tokens(&self, is_pair: bool) -> usize {
self.processor.added_tokens(is_pair)
}
fn process_encodings(
&self,
encodings: Vec<Encoding>,
add_special_tokens: bool,
) -> tk::Result<Vec<Encoding>> {
self.processor
.process_encodings(encodings, add_special_tokens)
}
}
#[pymethods]
impl PyPostProcessor {
fn __getstate__(&self, py: Python) -> PyResult<PyObject> {
let data = serde_json::to_string(self.processor.as_ref()).map_err(|e| {
exceptions::PyException::new_err(format!(
"Error while attempting to pickle PostProcessor: {}",
e
))
})?;
Ok(PyBytes::new(py, data.as_bytes()).to_object(py))
}
fn __setstate__(&mut self, py: Python, state: PyObject) -> PyResult<()> {
match state.extract::<&PyBytes>(py) {
Ok(s) => {
self.processor = serde_json::from_slice(s.as_bytes()).map_err(|e| {
exceptions::PyException::new_err(format!(
"Error while attempting to unpickle PostProcessor: {}",
e
))
})?;
Ok(())
}
Err(e) => Err(e),
}
}
/// Return the number of special tokens that would be added for single/pair sentences.
///
/// Args:
/// is_pair (:obj:`bool`):
/// Whether the input would be a pair of sequences
///
/// Returns:
/// :obj:`int`: The number of tokens to add
#[pyo3(text_signature = "(self, is_pair)")]
fn num_special_tokens_to_add(&self, is_pair: bool) -> usize {
self.processor.added_tokens(is_pair)
}
/// Post-process the given encodings, generating the final one
///
/// Args:
/// encoding (:class:`~tokenizers.Encoding`):
/// The encoding for the first sequence
///
/// pair (:class:`~tokenizers.Encoding`, `optional`):
/// The encoding for the pair sequence
///
/// add_special_tokens (:obj:`bool`):
/// Whether to add the special tokens
///
/// Return:
/// :class:`~tokenizers.Encoding`: The final encoding
#[pyo3(signature = (encoding, pair = None, add_special_tokens = true))]
#[pyo3(text_signature = "(self, encoding, pair=None, add_special_tokens=True)")]
fn process(
&self,
encoding: &PyEncoding,
pair: Option<&PyEncoding>,
add_special_tokens: bool,
) -> PyResult<PyEncoding> {
let final_encoding = ToPyResult(self.processor.process(
encoding.encoding.clone(),
pair.map(|e| e.encoding.clone()),
add_special_tokens,
))
.into_py()?;
Ok(final_encoding.into())
}
}
/// This post-processor takes care of adding the special tokens needed by
/// a Bert model:
///
/// - a SEP token
/// - a CLS token
///
/// Args:
/// sep (:obj:`Tuple[str, int]`):
/// A tuple with the string representation of the SEP token, and its id
///
/// cls (:obj:`Tuple[str, int]`):
/// A tuple with the string representation of the CLS token, and its id
#[pyclass(extends=PyPostProcessor, module = "tokenizers.processors", name = "BertProcessing")]
#[pyo3(text_signature = "(self, sep, cls)")]
pub struct PyBertProcessing {}
#[pymethods]
impl PyBertProcessing {
#[new]
fn new(sep: (String, u32), cls: (String, u32)) -> (Self, PyPostProcessor) {
(
PyBertProcessing {},
PyPostProcessor::new(Arc::new(BertProcessing::new(sep, cls).into())),
)
}
fn __getnewargs__<'p>(&self, py: Python<'p>) -> &'p PyTuple {
PyTuple::new(py, [("", 0), ("", 0)])
}
}
/// This post-processor takes care of adding the special tokens needed by
/// a Roberta model:
///
/// - a SEP token
/// - a CLS token
///
/// It also takes care of trimming the offsets.
/// By default, the ByteLevel BPE might include whitespaces in the produced tokens. If you don't
/// want the offsets to include these whitespaces, then this PostProcessor should be initialized
/// with :obj:`trim_offsets=True`
///
/// Args:
/// sep (:obj:`Tuple[str, int]`):
/// A tuple with the string representation of the SEP token, and its id
///
/// cls (:obj:`Tuple[str, int]`):
/// A tuple with the string representation of the CLS token, and its id
///
/// trim_offsets (:obj:`bool`, `optional`, defaults to :obj:`True`):
/// Whether to trim the whitespaces from the produced offsets.
///
/// add_prefix_space (:obj:`bool`, `optional`, defaults to :obj:`True`):
/// Whether the add_prefix_space option was enabled during pre-tokenization. This
/// is relevant because it defines the way the offsets are trimmed out.
#[pyclass(extends=PyPostProcessor, module = "tokenizers.processors", name = "RobertaProcessing")]
#[pyo3(text_signature = "(self, sep, cls, trim_offsets=True, add_prefix_space=True)")]
pub struct PyRobertaProcessing {}
#[pymethods]
impl PyRobertaProcessing {
#[new]
#[pyo3(signature = (sep, cls, trim_offsets = true, add_prefix_space = true))]
fn new(
sep: (String, u32),
cls: (String, u32),
trim_offsets: bool,
add_prefix_space: bool,
) -> (Self, PyPostProcessor) {
let proc = RobertaProcessing::new(sep, cls)
.trim_offsets(trim_offsets)
.add_prefix_space(add_prefix_space);
(
PyRobertaProcessing {},
PyPostProcessor::new(Arc::new(proc.into())),
)
}
fn __getnewargs__<'p>(&self, py: Python<'p>) -> &'p PyTuple {
PyTuple::new(py, [("", 0), ("", 0)])
}
}
/// This post-processor takes care of trimming the offsets.
///
/// By default, the ByteLevel BPE might include whitespaces in the produced tokens. If you don't
/// want the offsets to include these whitespaces, then this PostProcessor must be used.
///
/// Args:
/// trim_offsets (:obj:`bool`):
/// Whether to trim the whitespaces from the produced offsets.
#[pyclass(extends=PyPostProcessor, module = "tokenizers.processors", name = "ByteLevel")]
#[pyo3(text_signature = "(self, trim_offsets=True)")]
pub struct PyByteLevel {}
#[pymethods]
impl PyByteLevel {
#[new]
#[pyo3(signature = (trim_offsets = None, **_kwargs))]
fn new(trim_offsets: Option<bool>, _kwargs: Option<&PyDict>) -> (Self, PyPostProcessor) {
let mut byte_level = ByteLevel::default();
if let Some(to) = trim_offsets {
byte_level = byte_level.trim_offsets(to);
}
(
PyByteLevel {},
PyPostProcessor::new(Arc::new(byte_level.into())),
)
}
}
#[derive(Clone, Debug)]
pub struct PySpecialToken(SpecialToken);
impl From<PySpecialToken> for SpecialToken {
fn from(v: PySpecialToken) -> Self {
v.0
}
}
impl FromPyObject<'_> for PySpecialToken {
fn extract(ob: &PyAny) -> PyResult<Self> {
if let Ok(v) = ob.extract::<(String, u32)>() {
Ok(Self(v.into()))
} else if let Ok(v) = ob.extract::<(u32, String)>() {
Ok(Self(v.into()))
} else if let Ok(d) = ob.downcast::<PyDict>() {
let id = d
.get_item("id")
.ok_or_else(|| exceptions::PyValueError::new_err("`id` must be specified"))?
.extract::<String>()?;
let ids = d
.get_item("ids")
.ok_or_else(|| exceptions::PyValueError::new_err("`ids` must be specified"))?
.extract::<Vec<u32>>()?;
let tokens = d
.get_item("tokens")
.ok_or_else(|| exceptions::PyValueError::new_err("`tokens` must be specified"))?
.extract::<Vec<String>>()?;
Ok(Self(
ToPyResult(SpecialToken::new(id, ids, tokens)).into_py()?,
))
} else {
Err(exceptions::PyTypeError::new_err(
"Expected Union[Tuple[str, int], Tuple[int, str], dict]",
))
}
}
}
#[derive(Clone, Debug)]
pub struct PyTemplate(Template);
impl From<PyTemplate> for Template {
fn from(v: PyTemplate) -> Self {
v.0
}
}
impl FromPyObject<'_> for PyTemplate {
fn extract(ob: &PyAny) -> PyResult<Self> {
if let Ok(s) = ob.extract::<&str>() {
Ok(Self(
s.try_into().map_err(exceptions::PyValueError::new_err)?,
))
} else if let Ok(s) = ob.extract::<Vec<&str>>() {
Ok(Self(
s.try_into().map_err(exceptions::PyValueError::new_err)?,
))
} else {
Err(exceptions::PyTypeError::new_err(
"Expected Union[str, List[str]]",
))
}
}
}
/// Provides a way to specify templates in order to add the special tokens to each
/// input sequence as relevant.
///
/// Let's take :obj:`BERT` tokenizer as an example. It uses two special tokens, used to
/// delimitate each sequence. :obj:`[CLS]` is always used at the beginning of the first
/// sequence, and :obj:`[SEP]` is added at the end of both the first, and the pair
/// sequences. The final result looks like this:
///
/// - Single sequence: :obj:`[CLS] Hello there [SEP]`
/// - Pair sequences: :obj:`[CLS] My name is Anthony [SEP] What is my name? [SEP]`
///
/// With the type ids as following::
///
/// [CLS] ... [SEP] ... [SEP]
/// 0 0 0 1 1
///
/// You can achieve such behavior using a TemplateProcessing::
///
/// TemplateProcessing(
/// single="[CLS] $0 [SEP]",
/// pair="[CLS] $A [SEP] $B:1 [SEP]:1",
/// special_tokens=[("[CLS]", 1), ("[SEP]", 0)],
/// )
///
/// In this example, each input sequence is identified using a ``$`` construct. This identifier
/// lets us specify each input sequence, and the type_id to use. When nothing is specified,
/// it uses the default values. Here are the different ways to specify it:
///
/// - Specifying the sequence, with default ``type_id == 0``: ``$A`` or ``$B``
/// - Specifying the `type_id` with default ``sequence == A``: ``$0``, ``$1``, ``$2``, ...
/// - Specifying both: ``$A:0``, ``$B:1``, ...
///
/// The same construct is used for special tokens: ``<identifier>(:<type_id>)?``.
///
/// **Warning**: You must ensure that you are giving the correct tokens/ids as these
/// will be added to the Encoding without any further check. If the given ids correspond
/// to something totally different in a `Tokenizer` using this `PostProcessor`, it
/// might lead to unexpected results.
///
/// Args:
/// single (:obj:`Template`):
/// The template used for single sequences
///
/// pair (:obj:`Template`):
/// The template used when both sequences are specified
///
/// special_tokens (:obj:`Tokens`):
/// The list of special tokens used in each sequences
///
/// Types:
///
/// Template (:obj:`str` or :obj:`List`):
/// - If a :obj:`str` is provided, the whitespace is used as delimiter between tokens
/// - If a :obj:`List[str]` is provided, a list of tokens
///
/// Tokens (:obj:`List[Union[Tuple[int, str], Tuple[str, int], dict]]`):
/// - A :obj:`Tuple` with both a token and its associated ID, in any order
/// - A :obj:`dict` with the following keys:
/// - "id": :obj:`str` => The special token id, as specified in the Template
/// - "ids": :obj:`List[int]` => The associated IDs
/// - "tokens": :obj:`List[str]` => The associated tokens
///
/// The given dict expects the provided :obj:`ids` and :obj:`tokens` lists to have
/// the same length.
#[pyclass(extends=PyPostProcessor, module = "tokenizers.processors", name = "TemplateProcessing")]
#[pyo3(text_signature = "(self, single, pair, special_tokens)")]
pub struct PyTemplateProcessing {}
#[pymethods]
impl PyTemplateProcessing {
#[new]
#[pyo3(signature = (single = None, pair = None, special_tokens = None))]
fn new(
single: Option<PyTemplate>,
pair: Option<PyTemplate>,
special_tokens: Option<Vec<PySpecialToken>>,
) -> PyResult<(Self, PyPostProcessor)> {
let mut builder = tk::processors::template::TemplateProcessing::builder();
if let Some(seq) = single {
builder.single(seq.into());
}
if let Some(seq) = pair {
builder.pair(seq.into());
}
if let Some(sp) = special_tokens {
builder.special_tokens(sp);
}
let processor = builder
.build()
.map_err(|e| exceptions::PyValueError::new_err(e.to_string()))?;
Ok((
PyTemplateProcessing {},
PyPostProcessor::new(Arc::new(processor.into())),
))
}
}
/// Sequence Processor
///
/// Args:
/// processors (:obj:`List[PostProcessor]`)
/// The processors that need to be chained
#[pyclass(extends=PyPostProcessor, module = "tokenizers.processors", name = "Sequence")]
#[pyo3(text_signature = "(self, processors)")]
pub struct PySequence {}
#[pymethods]
impl PySequence {
#[new]
#[pyo3(signature = (processors_py))]
fn new(processors_py: &PyList) -> (Self, PyPostProcessor) {
let mut processors: Vec<PostProcessorWrapper> = Vec::with_capacity(processors_py.len());
for n in processors_py.iter() {
let processor: PyRef<PyPostProcessor> = n.extract().unwrap();
let processor = processor.processor.as_ref();
processors.push(processor.clone());
}
let sequence_processor = Sequence::new(processors);
(
PySequence {},
PyPostProcessor::new(Arc::new(PostProcessorWrapper::Sequence(sequence_processor))),
)
}
fn __getnewargs__<'p>(&self, py: Python<'p>) -> &'p PyTuple {
PyTuple::new(py, [PyList::empty(py)])
}
}
/// Processors Module
#[pymodule]
pub fn processors(_py: Python, m: &PyModule) -> PyResult<()> {
m.add_class::<PyPostProcessor>()?;
m.add_class::<PyBertProcessing>()?;
m.add_class::<PyRobertaProcessing>()?;
m.add_class::<PyByteLevel>()?;
m.add_class::<PyTemplateProcessing>()?;
m.add_class::<PySequence>()?;
Ok(())
}
#[cfg(test)]
mod test {
use std::sync::Arc;
use pyo3::prelude::*;
use tk::processors::bert::BertProcessing;
use tk::processors::PostProcessorWrapper;
use crate::processors::PyPostProcessor;
#[test]
fn get_subtype() {
Python::with_gil(|py| {
let py_proc = PyPostProcessor::new(Arc::new(
BertProcessing::new(("SEP".into(), 0), ("CLS".into(), 1)).into(),
));
let py_bert = py_proc.get_as_subtype(py).unwrap();
assert_eq!(
"BertProcessing",
py_bert.as_ref(py).get_type().name().unwrap()
);
})
}
#[test]
fn serialize() {
let rs_processing = BertProcessing::new(("SEP".into(), 0), ("CLS".into(), 1));
let rs_wrapper: PostProcessorWrapper = rs_processing.clone().into();
let rs_processing_ser = serde_json::to_string(&rs_processing).unwrap();
let rs_wrapper_ser = serde_json::to_string(&rs_wrapper).unwrap();
let py_processing = PyPostProcessor::new(Arc::new(rs_wrapper));
let py_ser = serde_json::to_string(&py_processing).unwrap();
assert_eq!(py_ser, rs_processing_ser);
assert_eq!(py_ser, rs_wrapper_ser);
let py_processing: PyPostProcessor = serde_json::from_str(&rs_processing_ser).unwrap();
match py_processing.processor.as_ref() {
PostProcessorWrapper::Bert(_) => (),
_ => panic!("Expected Bert postprocessor."),
}
let py_processing: PyPostProcessor = serde_json::from_str(&rs_wrapper_ser).unwrap();
match py_processing.processor.as_ref() {
PostProcessorWrapper::Bert(_) => (),
_ => panic!("Expected Bert postprocessor."),
}
}
}