mirror of
https://github.com/mii443/tokenizers.git
synced 2025-08-22 16:25:30 +00:00
229 lines
9.6 KiB
Rust
229 lines
9.6 KiB
Rust
use std::collections::HashMap;
|
|
use std::sync::Arc;
|
|
|
|
use pyo3::exceptions;
|
|
use pyo3::prelude::*;
|
|
use pyo3::types::*;
|
|
use tk::models::TrainerWrapper;
|
|
use tk::Trainer;
|
|
use tokenizers as tk;
|
|
|
|
use crate::models::PyModel;
|
|
use crate::tokenizer::PyAddedToken;
|
|
|
|
#[pyclass(name=Trainer)]
|
|
pub struct PyTrainer {
|
|
pub trainer: TrainerWrapper,
|
|
}
|
|
|
|
impl PyTrainer {
|
|
pub fn new(trainer: TrainerWrapper) -> Self {
|
|
PyTrainer { trainer }
|
|
}
|
|
}
|
|
|
|
impl Trainer for PyTrainer {
|
|
type Model = PyModel;
|
|
|
|
fn should_show_progress(&self) -> bool {
|
|
self.trainer.should_show_progress()
|
|
}
|
|
|
|
fn train(&self, words: HashMap<String, u32>) -> tk::Result<(PyModel, Vec<tk::AddedToken>)> {
|
|
self.trainer.train(words).map(|(m, t)| {
|
|
let m = PyModel { model: Arc::new(m) };
|
|
(m, t)
|
|
})
|
|
}
|
|
|
|
fn process_tokens(&self, words: &mut HashMap<String, u32>, tokens: Vec<String>) {
|
|
self.trainer.process_tokens(words, tokens)
|
|
}
|
|
}
|
|
|
|
#[pyclass(extends=PyTrainer, name=BpeTrainer)]
|
|
pub struct PyBpeTrainer {}
|
|
#[pymethods]
|
|
impl PyBpeTrainer {
|
|
/// new(/ vocab_size, min_frequency)
|
|
/// --
|
|
///
|
|
/// Create a new BpeTrainer with the given configuration
|
|
#[new]
|
|
#[args(kwargs = "**")]
|
|
pub fn new(kwargs: Option<&PyDict>) -> PyResult<(Self, PyTrainer)> {
|
|
let mut builder = tk::models::bpe::BpeTrainer::builder();
|
|
if let Some(kwargs) = kwargs {
|
|
for (key, val) in kwargs {
|
|
let key: &str = key.extract()?;
|
|
match key {
|
|
"vocab_size" => builder = builder.vocab_size(val.extract()?),
|
|
"min_frequency" => builder = builder.min_frequency(val.extract()?),
|
|
"show_progress" => builder = builder.show_progress(val.extract()?),
|
|
"special_tokens" => {
|
|
builder = builder.special_tokens(
|
|
val.cast_as::<PyList>()?
|
|
.into_iter()
|
|
.map(|token| {
|
|
if let Ok(content) = token.extract::<String>() {
|
|
Ok(PyAddedToken::from(content, Some(true)).get_token())
|
|
} else if let Ok(mut token) =
|
|
token.extract::<PyRefMut<PyAddedToken>>()
|
|
{
|
|
token.is_special_token = true;
|
|
Ok(token.get_token())
|
|
} else {
|
|
Err(exceptions::Exception::py_err(
|
|
"special_tokens must be a List[Union[str, AddedToken]]",
|
|
))
|
|
}
|
|
})
|
|
.collect::<PyResult<Vec<_>>>()?,
|
|
);
|
|
}
|
|
"limit_alphabet" => builder = builder.limit_alphabet(val.extract()?),
|
|
"initial_alphabet" => {
|
|
let alphabet: Vec<String> = val.extract()?;
|
|
builder = builder.initial_alphabet(
|
|
alphabet
|
|
.into_iter()
|
|
.map(|s| s.chars().next())
|
|
.filter(|c| c.is_some())
|
|
.map(|c| c.unwrap())
|
|
.collect(),
|
|
);
|
|
}
|
|
"continuing_subword_prefix" => {
|
|
builder = builder.continuing_subword_prefix(val.extract()?)
|
|
}
|
|
"end_of_word_suffix" => builder = builder.end_of_word_suffix(val.extract()?),
|
|
_ => println!("Ignored unknown kwargs option {}", key),
|
|
};
|
|
}
|
|
}
|
|
Ok((PyBpeTrainer {}, PyTrainer::new(builder.build().into())))
|
|
}
|
|
}
|
|
|
|
#[pyclass(extends=PyTrainer, name=WordPieceTrainer)]
|
|
pub struct PyWordPieceTrainer {}
|
|
#[pymethods]
|
|
impl PyWordPieceTrainer {
|
|
/// new(/ vocab_size, min_frequency)
|
|
/// --
|
|
///
|
|
/// Create a new BpeTrainer with the given configuration
|
|
#[new]
|
|
#[args(kwargs = "**")]
|
|
pub fn new(kwargs: Option<&PyDict>) -> PyResult<(Self, PyTrainer)> {
|
|
let mut builder = tk::models::wordpiece::WordPieceTrainer::builder();
|
|
if let Some(kwargs) = kwargs {
|
|
for (key, val) in kwargs {
|
|
let key: &str = key.extract()?;
|
|
match key {
|
|
"vocab_size" => builder = builder.vocab_size(val.extract()?),
|
|
"min_frequency" => builder = builder.min_frequency(val.extract()?),
|
|
"show_progress" => builder = builder.show_progress(val.extract()?),
|
|
"special_tokens" => {
|
|
builder = builder.special_tokens(
|
|
val.cast_as::<PyList>()?
|
|
.into_iter()
|
|
.map(|token| {
|
|
if let Ok(content) = token.extract::<String>() {
|
|
Ok(PyAddedToken::from(content, Some(true)).get_token())
|
|
} else if let Ok(mut token) =
|
|
token.extract::<PyRefMut<PyAddedToken>>()
|
|
{
|
|
token.is_special_token = true;
|
|
Ok(token.get_token())
|
|
} else {
|
|
Err(exceptions::Exception::py_err(
|
|
"special_tokens must be a List[Union[str, AddedToken]]",
|
|
))
|
|
}
|
|
})
|
|
.collect::<PyResult<Vec<_>>>()?,
|
|
);
|
|
}
|
|
"limit_alphabet" => builder = builder.limit_alphabet(val.extract()?),
|
|
"initial_alphabet" => {
|
|
let alphabet: Vec<String> = val.extract()?;
|
|
builder = builder.initial_alphabet(
|
|
alphabet
|
|
.into_iter()
|
|
.map(|s| s.chars().next())
|
|
.filter(|c| c.is_some())
|
|
.map(|c| c.unwrap())
|
|
.collect(),
|
|
);
|
|
}
|
|
"continuing_subword_prefix" => {
|
|
builder = builder.continuing_subword_prefix(val.extract()?)
|
|
}
|
|
"end_of_word_suffix" => builder = builder.end_of_word_suffix(val.extract()?),
|
|
_ => println!("Ignored unknown kwargs option {}", key),
|
|
};
|
|
}
|
|
}
|
|
|
|
Ok((
|
|
PyWordPieceTrainer {},
|
|
PyTrainer::new(builder.build().into()),
|
|
))
|
|
}
|
|
}
|
|
|
|
#[pyclass(extends=PyTrainer, name=UnigramTrainer)]
|
|
pub struct PyUnigramTrainer {}
|
|
#[pymethods]
|
|
impl PyUnigramTrainer {
|
|
/// Create a new UnigramTrainer with the given configuration
|
|
#[new]
|
|
#[args(kwargs = "**")]
|
|
pub fn new(kwargs: Option<&PyDict>) -> PyResult<(Self, PyTrainer)> {
|
|
let mut builder = tk::models::unigram::UnigramTrainer::builder();
|
|
if let Some(kwargs) = kwargs {
|
|
for (key, val) in kwargs {
|
|
let key: &str = key.extract()?;
|
|
match key {
|
|
"vocab_size" => builder.vocab_size(val.extract()?),
|
|
"show_progress" => builder.show_progress(val.extract()?),
|
|
"n_sub_iterations" => builder.n_sub_iterations(val.extract()?),
|
|
"shrinking_factor" => builder.shrinking_factor(val.extract()?),
|
|
"unk_token" => builder.unk_token(val.extract()?),
|
|
"max_piece_length" => builder.max_piece_length(val.extract()?),
|
|
"seed_size" => builder.seed_size(val.extract()?),
|
|
"special_tokens" => builder.special_tokens(
|
|
val.cast_as::<PyList>()?
|
|
.into_iter()
|
|
.map(|token| {
|
|
if let Ok(content) = token.extract::<String>() {
|
|
Ok(PyAddedToken::from(content, Some(true)).get_token())
|
|
} else if let Ok(mut token) =
|
|
token.extract::<PyRefMut<PyAddedToken>>()
|
|
{
|
|
token.is_special_token = true;
|
|
Ok(token.get_token())
|
|
} else {
|
|
Err(exceptions::Exception::py_err(
|
|
"special_tokens must be a List[Union[str, AddedToken]]",
|
|
))
|
|
}
|
|
})
|
|
.collect::<PyResult<Vec<_>>>()?,
|
|
),
|
|
_ => {
|
|
println!("Ignored unknown kwargs option {}", key);
|
|
&mut builder
|
|
}
|
|
};
|
|
}
|
|
}
|
|
|
|
let trainer: tokenizers::models::unigram::UnigramTrainer = builder
|
|
.build()
|
|
.map_err(|_| exceptions::Exception::py_err("Cannot build UnigramTrainer"))?;
|
|
Ok((PyUnigramTrainer {}, PyTrainer::new(trainer.into())))
|
|
}
|
|
}
|