Files
tokenizers/bindings/python/src/trainers.rs
Nicolas Patry 3a6504d274 Upgrade to PyO3 0.23 (#1708)
* Upgrade to PyO3 0.23

* Macos-12 deprecated?

* Clippy.

* Clippy auto ellision.
2024-12-31 18:36:01 +01:00

915 lines
33 KiB
Rust

use std::sync::{Arc, RwLock};
use crate::models::PyModel;
use crate::tokenizer::PyAddedToken;
use pyo3::exceptions;
use pyo3::prelude::*;
use pyo3::types::*;
use serde::{Deserialize, Serialize};
use tk::models::TrainerWrapper;
use tk::Trainer;
use tokenizers as tk;
/// Base class for all trainers
///
/// This class is not supposed to be instantiated directly. Instead, any implementation of a
/// Trainer will return an instance of this class when instantiated.
#[pyclass(module = "tokenizers.trainers", name = "Trainer", subclass)]
#[derive(Clone, Deserialize, Serialize)]
#[serde(transparent)]
pub struct PyTrainer {
pub trainer: Arc<RwLock<TrainerWrapper>>,
}
impl PyTrainer {
#[cfg(test)]
pub(crate) fn new(trainer: Arc<RwLock<TrainerWrapper>>) -> Self {
PyTrainer { trainer }
}
pub(crate) fn get_as_subtype(&self, py: Python<'_>) -> PyResult<PyObject> {
let base = self.clone();
Ok(match *self.trainer.as_ref().read().unwrap() {
TrainerWrapper::BpeTrainer(_) => Py::new(py, (PyBpeTrainer {}, base))?
.into_pyobject(py)?
.into_any()
.into(),
TrainerWrapper::WordPieceTrainer(_) => Py::new(py, (PyWordPieceTrainer {}, base))?
.into_pyobject(py)?
.into_any()
.into(),
TrainerWrapper::WordLevelTrainer(_) => Py::new(py, (PyWordLevelTrainer {}, base))?
.into_pyobject(py)?
.into_any()
.into(),
TrainerWrapper::UnigramTrainer(_) => Py::new(py, (PyUnigramTrainer {}, base))?
.into_pyobject(py)?
.into_any()
.into(),
})
}
}
#[pymethods]
impl PyTrainer {
fn __getstate__(&self, py: Python) -> PyResult<PyObject> {
let data = serde_json::to_string(&self.trainer).map_err(|e| {
exceptions::PyException::new_err(format!(
"Error while attempting to pickle PyTrainer: {}",
e
))
})?;
Ok(PyBytes::new(py, data.as_bytes()).into())
}
fn __setstate__(&mut self, py: Python, state: PyObject) -> PyResult<()> {
match state.extract::<&[u8]>(py) {
Ok(s) => {
let unpickled = serde_json::from_slice(s).map_err(|e| {
exceptions::PyException::new_err(format!(
"Error while attempting to unpickle PyTrainer: {}",
e
))
})?;
self.trainer = unpickled;
Ok(())
}
Err(e) => Err(e),
}
}
fn __repr__(&self) -> PyResult<String> {
crate::utils::serde_pyo3::repr(self)
.map_err(|e| exceptions::PyException::new_err(e.to_string()))
}
fn __str__(&self) -> PyResult<String> {
crate::utils::serde_pyo3::to_string(self)
.map_err(|e| exceptions::PyException::new_err(e.to_string()))
}
}
impl Trainer for PyTrainer {
type Model = PyModel;
fn should_show_progress(&self) -> bool {
self.trainer.read().unwrap().should_show_progress()
}
fn train(&self, model: &mut PyModel) -> tk::Result<Vec<tk::AddedToken>> {
self.trainer
.read()
.unwrap()
.train(&mut model.model.write().unwrap())
}
fn feed<I, S, F>(&mut self, iterator: I, process: F) -> tk::Result<()>
where
I: Iterator<Item = S> + Send,
S: AsRef<str> + Send,
F: Fn(&str) -> tk::Result<Vec<String>> + Sync,
{
self.trainer.write().unwrap().feed(iterator, process)
}
}
impl<I> From<I> for PyTrainer
where
I: Into<TrainerWrapper>,
{
fn from(trainer: I) -> Self {
PyTrainer {
trainer: Arc::new(RwLock::new(trainer.into())),
}
}
}
macro_rules! getter {
($self: ident, $variant: ident, $($name: tt)+) => {{
let super_ = $self.as_ref();
if let TrainerWrapper::$variant(ref trainer) = *super_.trainer.read().unwrap() {
trainer.$($name)+
} else {
unreachable!()
}
}};
}
macro_rules! setter {
($self: ident, $variant: ident, $name: ident, $value: expr) => {{
let super_ = $self.as_ref();
if let TrainerWrapper::$variant(ref mut trainer) = *super_.trainer.write().unwrap() {
trainer.$name = $value;
}
}};
($self: ident, $variant: ident, @$name: ident, $value: expr) => {{
let super_ = $self.as_ref();
if let TrainerWrapper::$variant(ref mut trainer) = *super_.trainer.write().unwrap() {
trainer.$name($value);
}
}};
}
/// Trainer capable of training a BPE model
///
/// Args:
/// vocab_size (:obj:`int`, `optional`):
/// The size of the final vocabulary, including all tokens and alphabet.
///
/// min_frequency (:obj:`int`, `optional`):
/// The minimum frequency a pair should have in order to be merged.
///
/// show_progress (:obj:`bool`, `optional`):
/// Whether to show progress bars while training.
///
/// special_tokens (:obj:`List[Union[str, AddedToken]]`, `optional`):
/// A list of special tokens the model should know of.
///
/// limit_alphabet (:obj:`int`, `optional`):
/// The maximum different characters to keep in the alphabet.
///
/// initial_alphabet (:obj:`List[str]`, `optional`):
/// A list of characters to include in the initial alphabet, even
/// if not seen in the training dataset.
/// If the strings contain more than one character, only the first one
/// is kept.
///
/// continuing_subword_prefix (:obj:`str`, `optional`):
/// A prefix to be used for every subword that is not a beginning-of-word.
///
/// end_of_word_suffix (:obj:`str`, `optional`):
/// A suffix to be used for every subword that is a end-of-word.
///
/// max_token_length (:obj:`int`, `optional`):
/// Prevents creating tokens longer than the specified size.
/// This can help with reducing polluting your vocabulary with
/// highly repetitive tokens like `======` for wikipedia
///
#[pyclass(extends=PyTrainer, module = "tokenizers.trainers", name = "BpeTrainer")]
pub struct PyBpeTrainer {}
#[pymethods]
impl PyBpeTrainer {
#[getter]
fn get_vocab_size(self_: PyRef<Self>) -> usize {
getter!(self_, BpeTrainer, vocab_size)
}
#[setter]
fn set_vocab_size(self_: PyRef<Self>, vocab_size: usize) {
setter!(self_, BpeTrainer, vocab_size, vocab_size);
}
#[getter]
fn get_min_frequency(self_: PyRef<Self>) -> u64 {
getter!(self_, BpeTrainer, min_frequency)
}
#[setter]
fn set_min_frequency(self_: PyRef<Self>, freq: u64) {
setter!(self_, BpeTrainer, min_frequency, freq);
}
#[getter]
fn get_show_progress(self_: PyRef<Self>) -> bool {
getter!(self_, BpeTrainer, show_progress)
}
#[setter]
fn set_show_progress(self_: PyRef<Self>, show_progress: bool) {
setter!(self_, BpeTrainer, show_progress, show_progress);
}
#[getter]
fn get_special_tokens(self_: PyRef<Self>) -> Vec<PyAddedToken> {
getter!(
self_,
BpeTrainer,
special_tokens
.iter()
.map(|tok| tok.clone().into())
.collect()
)
}
#[setter]
fn set_special_tokens(self_: PyRef<Self>, special_tokens: &Bound<'_, PyList>) -> PyResult<()> {
setter!(
self_,
BpeTrainer,
special_tokens,
special_tokens
.into_iter()
.map(|token| {
if let Ok(content) = token.extract::<String>() {
Ok(tk::tokenizer::AddedToken::from(content, true))
} else if let Ok(mut token) = token.extract::<PyRefMut<PyAddedToken>>() {
token.special = true;
Ok(token.get_token())
} else {
Err(exceptions::PyTypeError::new_err(
"Special tokens must be a List[Union[str, AddedToken]]",
))
}
})
.collect::<PyResult<Vec<_>>>()?
);
Ok(())
}
#[getter]
fn get_limit_alphabet(self_: PyRef<Self>) -> Option<usize> {
getter!(self_, BpeTrainer, limit_alphabet)
}
#[setter]
fn set_limit_alphabet(self_: PyRef<Self>, limit: Option<usize>) {
setter!(self_, BpeTrainer, limit_alphabet, limit);
}
#[getter]
fn get_max_token_length(self_: PyRef<Self>) -> Option<usize> {
getter!(self_, BpeTrainer, max_token_length)
}
#[setter]
fn set_max_token_length(self_: PyRef<Self>, limit: Option<usize>) {
setter!(self_, BpeTrainer, max_token_length, limit);
}
#[getter]
fn get_initial_alphabet(self_: PyRef<Self>) -> Vec<String> {
getter!(
self_,
BpeTrainer,
initial_alphabet.iter().map(|c| c.to_string()).collect()
)
}
#[setter]
fn set_initial_alphabet(self_: PyRef<Self>, alphabet: Vec<char>) {
setter!(
self_,
BpeTrainer,
initial_alphabet,
alphabet.into_iter().collect()
);
}
#[getter]
fn get_continuing_subword_prefix(self_: PyRef<Self>) -> Option<String> {
getter!(self_, BpeTrainer, continuing_subword_prefix.clone())
}
#[setter]
fn set_continuing_subword_prefix(self_: PyRef<Self>, prefix: Option<String>) {
setter!(self_, BpeTrainer, continuing_subword_prefix, prefix);
}
#[getter]
fn get_end_of_word_suffix(self_: PyRef<Self>) -> Option<String> {
getter!(self_, BpeTrainer, end_of_word_suffix.clone())
}
#[setter]
fn set_end_of_word_suffix(self_: PyRef<Self>, suffix: Option<String>) {
setter!(self_, BpeTrainer, end_of_word_suffix, suffix);
}
#[new]
#[pyo3(signature = (**kwargs), text_signature = None)]
pub fn new(kwargs: Option<&Bound<'_, PyDict>>) -> PyResult<(Self, PyTrainer)> {
let mut builder = tk::models::bpe::BpeTrainer::builder();
if let Some(kwargs) = kwargs {
for (key, val) in kwargs {
let key: String = key.extract()?;
match key.as_ref() {
"vocab_size" => builder = builder.vocab_size(val.extract()?),
"min_frequency" => builder = builder.min_frequency(val.extract()?),
"show_progress" => builder = builder.show_progress(val.extract()?),
"special_tokens" => {
builder = builder.special_tokens(
val.downcast::<PyList>()?
.into_iter()
.map(|token| {
if let Ok(content) = token.extract::<String>() {
Ok(PyAddedToken::from(content, Some(true)).get_token())
} else if let Ok(mut token) =
token.extract::<PyRefMut<PyAddedToken>>()
{
token.special = true;
Ok(token.get_token())
} else {
Err(exceptions::PyTypeError::new_err(
"special_tokens must be a List[Union[str, AddedToken]]",
))
}
})
.collect::<PyResult<Vec<_>>>()?,
);
}
"limit_alphabet" => builder = builder.limit_alphabet(val.extract()?),
"max_token_length" => builder = builder.max_token_length(val.extract()?),
"initial_alphabet" => {
let alphabet: Vec<String> = val.extract()?;
builder = builder.initial_alphabet(
alphabet
.into_iter()
.filter_map(|s| s.chars().next())
.collect(),
);
}
"continuing_subword_prefix" => {
builder = builder.continuing_subword_prefix(val.extract()?)
}
"end_of_word_suffix" => builder = builder.end_of_word_suffix(val.extract()?),
_ => println!("Ignored unknown kwargs option {}", key),
};
}
}
Ok((PyBpeTrainer {}, builder.build().into()))
}
}
/// Trainer capable of training a WordPiece model
///
/// Args:
/// vocab_size (:obj:`int`, `optional`):
/// The size of the final vocabulary, including all tokens and alphabet.
///
/// min_frequency (:obj:`int`, `optional`):
/// The minimum frequency a pair should have in order to be merged.
///
/// show_progress (:obj:`bool`, `optional`):
/// Whether to show progress bars while training.
///
/// special_tokens (:obj:`List[Union[str, AddedToken]]`, `optional`):
/// A list of special tokens the model should know of.
///
/// limit_alphabet (:obj:`int`, `optional`):
/// The maximum different characters to keep in the alphabet.
///
/// initial_alphabet (:obj:`List[str]`, `optional`):
/// A list of characters to include in the initial alphabet, even
/// if not seen in the training dataset.
/// If the strings contain more than one character, only the first one
/// is kept.
///
/// continuing_subword_prefix (:obj:`str`, `optional`):
/// A prefix to be used for every subword that is not a beginning-of-word.
///
/// end_of_word_suffix (:obj:`str`, `optional`):
/// A suffix to be used for every subword that is a end-of-word.
#[pyclass(extends=PyTrainer, module = "tokenizers.trainers", name = "WordPieceTrainer")]
pub struct PyWordPieceTrainer {}
#[pymethods]
impl PyWordPieceTrainer {
#[getter]
fn get_vocab_size(self_: PyRef<Self>) -> usize {
getter!(self_, WordPieceTrainer, vocab_size())
}
#[setter]
fn set_vocab_size(self_: PyRef<Self>, vocab_size: usize) {
setter!(self_, WordPieceTrainer, @set_vocab_size, vocab_size);
}
#[getter]
fn get_min_frequency(self_: PyRef<Self>) -> u64 {
getter!(self_, WordPieceTrainer, min_frequency())
}
#[setter]
fn set_min_frequency(self_: PyRef<Self>, freq: u64) {
setter!(self_, WordPieceTrainer, @set_min_frequency, freq);
}
#[getter]
fn get_show_progress(self_: PyRef<Self>) -> bool {
getter!(self_, WordPieceTrainer, show_progress())
}
#[setter]
fn set_show_progress(self_: PyRef<Self>, show_progress: bool) {
setter!(self_, WordPieceTrainer, @set_show_progress, show_progress);
}
#[getter]
fn get_special_tokens(self_: PyRef<Self>) -> Vec<PyAddedToken> {
getter!(
self_,
WordPieceTrainer,
special_tokens()
.iter()
.map(|tok| tok.clone().into())
.collect()
)
}
#[setter]
fn set_special_tokens(self_: PyRef<Self>, special_tokens: &Bound<'_, PyList>) -> PyResult<()> {
setter!(
self_,
WordPieceTrainer,
@set_special_tokens,
special_tokens
.into_iter()
.map(|token| {
if let Ok(content) = token.extract::<String>() {
Ok(tk::tokenizer::AddedToken::from(content, true))
} else if let Ok(mut token) = token.extract::<PyRefMut<PyAddedToken>>() {
token.special = true;
Ok(token.get_token())
} else {
Err(exceptions::PyTypeError::new_err(
"Special tokens must be a List[Union[str, AddedToken]]",
))
}
})
.collect::<PyResult<Vec<_>>>()?
);
Ok(())
}
#[getter]
fn get_limit_alphabet(self_: PyRef<Self>) -> Option<usize> {
getter!(self_, WordPieceTrainer, limit_alphabet())
}
#[setter]
fn set_limit_alphabet(self_: PyRef<Self>, limit: Option<usize>) {
setter!(self_, WordPieceTrainer, @set_limit_alphabet, limit);
}
#[getter]
fn get_initial_alphabet(self_: PyRef<Self>) -> Vec<String> {
getter!(
self_,
WordPieceTrainer,
initial_alphabet().iter().map(|c| c.to_string()).collect()
)
}
#[setter]
fn set_initial_alphabet(self_: PyRef<Self>, alphabet: Vec<char>) {
setter!(
self_,
WordPieceTrainer,
@set_initial_alphabet,
alphabet.into_iter().collect()
);
}
#[getter]
fn get_continuing_subword_prefix(self_: PyRef<Self>) -> Option<String> {
getter!(self_, WordPieceTrainer, continuing_subword_prefix().clone())
}
#[setter]
fn set_continuing_subword_prefix(self_: PyRef<Self>, prefix: Option<String>) {
setter!(self_, WordPieceTrainer, @set_continuing_subword_prefix, prefix);
}
#[getter]
fn get_end_of_word_suffix(self_: PyRef<Self>) -> Option<String> {
getter!(self_, WordPieceTrainer, end_of_word_suffix().clone())
}
#[setter]
fn set_end_of_word_suffix(self_: PyRef<Self>, suffix: Option<String>) {
setter!(self_, WordPieceTrainer, @set_end_of_word_suffix, suffix);
}
#[new]
#[pyo3(
signature = (** kwargs),
text_signature = "(self, vocab_size=30000, min_frequency=0, show_progress=True, special_tokens=[], limit_alphabet=None, initial_alphabet= [],continuing_subword_prefix=\"##\", end_of_word_suffix=None)"
)]
pub fn new(kwargs: Option<&Bound<'_, PyDict>>) -> PyResult<(Self, PyTrainer)> {
let mut builder = tk::models::wordpiece::WordPieceTrainer::builder();
if let Some(kwargs) = kwargs {
for (key, val) in kwargs {
let key: String = key.extract()?;
match key.as_ref() {
"vocab_size" => builder = builder.vocab_size(val.extract()?),
"min_frequency" => builder = builder.min_frequency(val.extract()?),
"show_progress" => builder = builder.show_progress(val.extract()?),
"special_tokens" => {
builder = builder.special_tokens(
val.downcast::<PyList>()?
.into_iter()
.map(|token| {
if let Ok(content) = token.extract::<String>() {
Ok(PyAddedToken::from(content, Some(true)).get_token())
} else if let Ok(mut token) =
token.extract::<PyRefMut<PyAddedToken>>()
{
token.special = true;
Ok(token.get_token())
} else {
Err(exceptions::PyTypeError::new_err(
"special_tokens must be a List[Union[str, AddedToken]]",
))
}
})
.collect::<PyResult<Vec<_>>>()?,
);
}
"limit_alphabet" => builder = builder.limit_alphabet(val.extract()?),
"initial_alphabet" => {
let alphabet: Vec<String> = val.extract()?;
builder = builder.initial_alphabet(
alphabet
.into_iter()
.filter_map(|s| s.chars().next())
.collect(),
);
}
"continuing_subword_prefix" => {
builder = builder.continuing_subword_prefix(val.extract()?)
}
"end_of_word_suffix" => builder = builder.end_of_word_suffix(val.extract()?),
_ => println!("Ignored unknown kwargs option {}", key),
};
}
}
Ok((PyWordPieceTrainer {}, builder.build().into()))
}
}
/// Trainer capable of training a WorldLevel model
///
/// Args:
/// vocab_size (:obj:`int`, `optional`):
/// The size of the final vocabulary, including all tokens and alphabet.
///
/// min_frequency (:obj:`int`, `optional`):
/// The minimum frequency a pair should have in order to be merged.
///
/// show_progress (:obj:`bool`, `optional`):
/// Whether to show progress bars while training.
///
/// special_tokens (:obj:`List[Union[str, AddedToken]]`):
/// A list of special tokens the model should know of.
#[pyclass(extends=PyTrainer, module = "tokenizers.trainers", name = "WordLevelTrainer")]
pub struct PyWordLevelTrainer {}
#[pymethods]
impl PyWordLevelTrainer {
#[getter]
fn get_vocab_size(self_: PyRef<Self>) -> usize {
getter!(self_, WordLevelTrainer, vocab_size)
}
#[setter]
fn set_vocab_size(self_: PyRef<Self>, vocab_size: usize) {
setter!(self_, WordLevelTrainer, vocab_size, vocab_size);
}
#[getter]
fn get_min_frequency(self_: PyRef<Self>) -> u64 {
getter!(self_, WordLevelTrainer, min_frequency)
}
#[setter]
fn set_min_frequency(self_: PyRef<Self>, freq: u64) {
setter!(self_, WordLevelTrainer, min_frequency, freq);
}
#[getter]
fn get_show_progress(self_: PyRef<Self>) -> bool {
getter!(self_, WordLevelTrainer, show_progress)
}
#[setter]
fn set_show_progress(self_: PyRef<Self>, show_progress: bool) {
setter!(self_, WordLevelTrainer, show_progress, show_progress);
}
#[getter]
fn get_special_tokens(self_: PyRef<Self>) -> Vec<PyAddedToken> {
getter!(
self_,
WordLevelTrainer,
special_tokens
.iter()
.map(|tok| tok.clone().into())
.collect()
)
}
#[setter]
fn set_special_tokens(self_: PyRef<Self>, special_tokens: &Bound<'_, PyList>) -> PyResult<()> {
setter!(
self_,
WordLevelTrainer,
special_tokens,
special_tokens
.into_iter()
.map(|token| {
if let Ok(content) = token.extract::<String>() {
Ok(tk::tokenizer::AddedToken::from(content, true))
} else if let Ok(mut token) = token.extract::<PyRefMut<PyAddedToken>>() {
token.special = true;
Ok(token.get_token())
} else {
Err(exceptions::PyTypeError::new_err(
"Special tokens must be a List[Union[str, AddedToken]]",
))
}
})
.collect::<PyResult<Vec<_>>>()?
);
Ok(())
}
#[new]
#[pyo3(signature = (**kwargs), text_signature = None)]
pub fn new(kwargs: Option<&Bound<'_, PyDict>>) -> PyResult<(Self, PyTrainer)> {
let mut builder = tk::models::wordlevel::WordLevelTrainer::builder();
if let Some(kwargs) = kwargs {
for (key, val) in kwargs {
let key: String = key.extract()?;
match key.as_ref() {
"vocab_size" => {
builder.vocab_size(val.extract()?);
}
"min_frequency" => {
builder.min_frequency(val.extract()?);
}
"show_progress" => {
builder.show_progress(val.extract()?);
}
"special_tokens" => {
builder.special_tokens(
val.downcast::<PyList>()?
.into_iter()
.map(|token| {
if let Ok(content) = token.extract::<String>() {
Ok(PyAddedToken::from(content, Some(true)).get_token())
} else if let Ok(mut token) =
token.extract::<PyRefMut<PyAddedToken>>()
{
token.special = true;
Ok(token.get_token())
} else {
Err(exceptions::PyTypeError::new_err(
"special_tokens must be a List[Union[str, AddedToken]]",
))
}
})
.collect::<PyResult<Vec<_>>>()?,
);
}
_ => println!("Ignored unknown kwargs option {}", key),
}
}
}
Ok((
PyWordLevelTrainer {},
builder
.build()
.expect("WordLevelTrainerBuilder cannot fail")
.into(),
))
}
}
/// Trainer capable of training a Unigram model
///
/// Args:
/// vocab_size (:obj:`int`):
/// The size of the final vocabulary, including all tokens and alphabet.
///
/// show_progress (:obj:`bool`):
/// Whether to show progress bars while training.
///
/// special_tokens (:obj:`List[Union[str, AddedToken]]`):
/// A list of special tokens the model should know of.
///
/// initial_alphabet (:obj:`List[str]`):
/// A list of characters to include in the initial alphabet, even
/// if not seen in the training dataset.
/// If the strings contain more than one character, only the first one
/// is kept.
///
/// shrinking_factor (:obj:`float`):
/// The shrinking factor used at each step of the training to prune the
/// vocabulary.
///
/// unk_token (:obj:`str`):
/// The token used for out-of-vocabulary tokens.
///
/// max_piece_length (:obj:`int`):
/// The maximum length of a given token.
///
/// n_sub_iterations (:obj:`int`):
/// The number of iterations of the EM algorithm to perform before
/// pruning the vocabulary.
#[pyclass(extends=PyTrainer, module = "tokenizers.trainers", name = "UnigramTrainer")]
pub struct PyUnigramTrainer {}
#[pymethods]
impl PyUnigramTrainer {
#[getter]
fn get_vocab_size(self_: PyRef<Self>) -> u32 {
getter!(self_, UnigramTrainer, vocab_size)
}
#[setter]
fn set_vocab_size(self_: PyRef<Self>, vocab_size: u32) {
setter!(self_, UnigramTrainer, vocab_size, vocab_size);
}
#[getter]
fn get_show_progress(self_: PyRef<Self>) -> bool {
getter!(self_, UnigramTrainer, show_progress)
}
#[setter]
fn set_show_progress(self_: PyRef<Self>, show_progress: bool) {
setter!(self_, UnigramTrainer, show_progress, show_progress);
}
#[getter]
fn get_special_tokens(self_: PyRef<Self>) -> Vec<PyAddedToken> {
getter!(
self_,
UnigramTrainer,
special_tokens
.iter()
.map(|tok| tok.clone().into())
.collect()
)
}
#[setter]
fn set_special_tokens(self_: PyRef<Self>, special_tokens: &Bound<'_, PyList>) -> PyResult<()> {
setter!(
self_,
UnigramTrainer,
special_tokens,
special_tokens
.into_iter()
.map(|token| {
if let Ok(content) = token.extract::<String>() {
Ok(tk::tokenizer::AddedToken::from(content, true))
} else if let Ok(mut token) = token.extract::<PyRefMut<PyAddedToken>>() {
token.special = true;
Ok(token.get_token())
} else {
Err(exceptions::PyTypeError::new_err(
"Special tokens must be a List[Union[str, AddedToken]]",
))
}
})
.collect::<PyResult<Vec<_>>>()?
);
Ok(())
}
#[getter]
fn get_initial_alphabet(self_: PyRef<Self>) -> Vec<String> {
getter!(
self_,
UnigramTrainer,
initial_alphabet.iter().map(|c| c.to_string()).collect()
)
}
#[setter]
fn set_initial_alphabet(self_: PyRef<Self>, alphabet: Vec<char>) {
setter!(
self_,
UnigramTrainer,
initial_alphabet,
alphabet.into_iter().collect()
);
}
#[new]
#[pyo3(
signature = (**kwargs),
text_signature = "(self, vocab_size=8000, show_progress=True, special_tokens=[], shrinking_factor=0.75, unk_token=None, max_piece_length=16, n_sub_iterations=2)"
)]
pub fn new(kwargs: Option<Bound<'_, PyDict>>) -> PyResult<(Self, PyTrainer)> {
let mut builder = tk::models::unigram::UnigramTrainer::builder();
if let Some(kwargs) = kwargs {
for (key, val) in kwargs {
let key: String = key.extract()?;
match key.as_ref() {
"vocab_size" => builder.vocab_size(val.extract()?),
"show_progress" => builder.show_progress(val.extract()?),
"n_sub_iterations" => builder.n_sub_iterations(val.extract()?),
"shrinking_factor" => builder.shrinking_factor(val.extract()?),
"unk_token" => builder.unk_token(val.extract()?),
"max_piece_length" => builder.max_piece_length(val.extract()?),
"seed_size" => builder.seed_size(val.extract()?),
"initial_alphabet" => {
let alphabet: Vec<String> = val.extract()?;
builder.initial_alphabet(
alphabet
.into_iter()
.filter_map(|s| s.chars().next())
.collect(),
)
}
"special_tokens" => builder.special_tokens(
val.downcast::<PyList>()?
.into_iter()
.map(|token| {
if let Ok(content) = token.extract::<String>() {
Ok(PyAddedToken::from(content, Some(true)).get_token())
} else if let Ok(mut token) =
token.extract::<PyRefMut<PyAddedToken>>()
{
token.special = true;
Ok(token.get_token())
} else {
Err(exceptions::PyTypeError::new_err(
"special_tokens must be a List[Union[str, AddedToken]]",
))
}
})
.collect::<PyResult<Vec<_>>>()?,
),
_ => {
println!("Ignored unknown kwargs option {}", key);
&mut builder
}
};
}
}
let trainer: tokenizers::models::unigram::UnigramTrainer =
builder.build().map_err(|e| {
exceptions::PyException::new_err(format!("Cannot build UnigramTrainer: {}", e))
})?;
Ok((PyUnigramTrainer {}, trainer.into()))
}
}
/// Trainers Module
#[pymodule]
pub fn trainers(m: &Bound<'_, PyModule>) -> PyResult<()> {
m.add_class::<PyTrainer>()?;
m.add_class::<PyBpeTrainer>()?;
m.add_class::<PyWordPieceTrainer>()?;
m.add_class::<PyWordLevelTrainer>()?;
m.add_class::<PyUnigramTrainer>()?;
Ok(())
}
#[cfg(test)]
mod tests {
use super::*;
use tk::models::bpe::trainer::BpeTrainer;
#[test]
fn get_subtype() {
Python::with_gil(|py| {
let py_trainer = PyTrainer::new(Arc::new(RwLock::new(BpeTrainer::default().into())));
let py_bpe = py_trainer.get_as_subtype(py).unwrap();
assert_eq!("BpeTrainer", py_bpe.bind(py).get_type().qualname().unwrap());
})
}
}