Files
tokenizers/bindings/python/src/tokenizer.rs
2019-12-16 18:45:26 -05:00

160 lines
5.0 KiB
Rust

extern crate tokenizers as tk;
use pyo3::exceptions;
use pyo3::prelude::*;
use pyo3::types::*;
use super::decoders::Decoder;
use super::encoding::Encoding;
use super::error::ToPyResult;
use super::models::Model;
use super::pre_tokenizers::PreTokenizer;
use super::trainers::Trainer;
#[pyclass(dict)]
pub struct Tokenizer {
tokenizer: tk::tokenizer::Tokenizer,
}
#[pymethods]
impl Tokenizer {
#[new]
fn new(obj: &PyRawObject, model: &mut Model) -> PyResult<()> {
if let Some(model) = model.model.to_pointer() {
let tokenizer = tk::tokenizer::Tokenizer::new(model);
obj.init({ Tokenizer { tokenizer } });
Ok(())
} else {
Err(exceptions::Exception::py_err(
"The Model is already being used in another Tokenizer",
))
}
}
#[getter]
fn get_vocab_size(&self) -> usize {
self.tokenizer.get_vocab_size()
}
fn with_model(&mut self, model: &mut Model) -> PyResult<()> {
if let Some(model) = model.model.to_pointer() {
self.tokenizer.with_model(model);
Ok(())
} else {
Err(exceptions::Exception::py_err(
"The Model is already being used in another Tokenizer",
))
}
}
fn with_pre_tokenizer(&mut self, pretok: &mut PreTokenizer) -> PyResult<()> {
if let Some(pretok) = pretok.pretok.to_pointer() {
self.tokenizer.with_pre_tokenizer(pretok);
Ok(())
} else {
Err(exceptions::Exception::py_err(
"The PreTokenizer is already being used in another Tokenizer",
))
}
}
fn with_decoder(&mut self, decoder: &mut Decoder) -> PyResult<()> {
if let Some(decoder) = decoder.decoder.to_pointer() {
self.tokenizer.with_decoder(decoder);
Ok(())
} else {
Err(exceptions::Exception::py_err(
"The Decoder is already being used in another Tokenizer",
))
}
}
fn encode(&self, sentence: &str, pair: Option<&str>) -> PyResult<Encoding> {
ToPyResult(
self.tokenizer
.encode(if let Some(pair) = pair {
tk::tokenizer::EncodeInput::Dual(sentence.to_owned(), pair.to_owned())
} else {
tk::tokenizer::EncodeInput::Single(sentence.to_owned())
})
.map(Encoding::new),
)
.into()
}
fn encode_batch(&self, sentences: &PyList) -> PyResult<Vec<Encoding>> {
let inputs = sentences
.into_iter()
.map(|item| {
if let Ok(s1) = item.extract::<String>() {
Ok(tk::tokenizer::EncodeInput::Single(s1))
} else if let Ok((s1, s2)) = item.extract::<(String, String)>() {
Ok(tk::tokenizer::EncodeInput::Dual(s1, s2))
} else {
Err(exceptions::Exception::py_err(
"Input must be a list[str] or list[(str, str)]",
))
}
})
.collect::<PyResult<Vec<_>>>()?;
ToPyResult(
self.tokenizer
.encode_batch(inputs)
.map(|encodings| encodings.into_iter().map(Encoding::new).collect()),
)
.into()
}
fn decode(&self, ids: Vec<u32>) -> PyResult<String> {
ToPyResult(self.tokenizer.decode(ids)).into()
}
fn decode_batch(&self, sentences: Vec<Vec<u32>>) -> PyResult<Vec<String>> {
ToPyResult(self.tokenizer.decode_batch(sentences)).into()
}
fn token_to_id(&self, token: &str) -> Option<u32> {
self.tokenizer.token_to_id(token)
}
fn id_to_token(&self, id: u32) -> Option<String> {
self.tokenizer.id_to_token(id)
}
fn add_tokens(&mut self, tokens: &PyList) -> PyResult<usize> {
let tokens = tokens
.into_iter()
.map(|token| {
if let Ok(content) = token.extract::<String>() {
Ok(tk::tokenizer::AddedToken {
content,
..Default::default()
})
} else if let Ok((content, single_word)) = token.extract::<(String, bool)>() {
Ok(tk::tokenizer::AddedToken {
content,
single_word,
})
} else {
Err(exceptions::Exception::py_err(
"Input must be a list[str] or list[(str, bool)]",
))
}
})
.collect::<PyResult<Vec<_>>>()?;
Ok(self.tokenizer.add_tokens(&tokens))
}
fn train(&mut self, trainer: &Trainer, files: Vec<String>) -> PyResult<()> {
trainer.trainer.execute(|trainer| {
if let Err(e) = self.tokenizer.train(trainer, files) {
Err(exceptions::Exception::py_err(format!("{}", e)))
} else {
Ok(())
}
})
}
}