mirror of
https://github.com/mii443/tokenizers.git
synced 2025-08-22 16:25:30 +00:00
* version = "0.15.3-dev-0” Improve performances of meta space, but also just fix it. (transformers) ➜ transformers git:(refactor-default-llama) ✗ python ../scripts/gemma-dummy.py Token indices sequence length is longer than the specified maximum sequence length for this model (14999 > 2048). Running this sequence through the model will result in indexing errors ['<REPR_END>', '▁inform', '<s>', '.', '▁Hey', '<unk>', '.', '▁', '▁', '▁', '▁', '▁', '▁', '▁.'] ['▁inform', '<s>', '.', '▁Hey', '<unk>', '.', '▁', '▁', '▁', '▁', '▁', '▁', '▁.'] [0.0006330013275146484, 0.0014591217041015625, 0.015890836715698242, 0.18584918975830078, 2.1726326942443848] (transformers) ➜ transformers git:(refactor-default-llama) ✗ python ../scripts/gemma-dummy.py Token indices sequence length is longer than the specified maximum sequence length for this model (10000 > 2048). Running this sequence through the model will result in indexing errors ['<REPR_END>', 'in', 'form', '<s>', '.', '▁Hey', '<unk>', '.', '▁▁▁▁▁▁', '▁.'] ['in', 'form', '<s>', '.', '▁Hey', '<unk>', '.', '▁▁▁▁▁▁', '▁.'] [0.0008409023284912109, 0.0008909702301025391, 0.00882411003112793, 0.10214710235595703, 1.187899112701416] * well what do we have * nit * be BC with non legacy * unrelated change for clippy * fix test * splitting is a must for word_ids * fmt and lint * Fixing everything (hopefully better). * Fixing node. * Including yarn.lock * Lint. * Stubs. * revert to use split * fix merge issues * fix tests * finish fixing tests * ruff --------- Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
NodeJS implementation of today's most used tokenizers, with a focus on performance and versatility. Bindings over the Rust implementation. If you are interested in the High-level design, you can go check it there.
Main features
- Train new vocabularies and tokenize using 4 pre-made tokenizers (Bert WordPiece and the 3 most common BPE versions).
- Extremely fast (both training and tokenization), thanks to the Rust implementation. Takes less than 20 seconds to tokenize a GB of text on a server's CPU.
- Easy to use, but also extremely versatile.
- Designed for research and production.
- Normalization comes with alignments tracking. It's always possible to get the part of the original sentence that corresponds to a given token.
- Does all the pre-processing: Truncate, Pad, add the special tokens your model needs.
Installation
npm install tokenizers@latest
Basic example
import { Tokenizer } from "tokenizers";
const tokenizer = await Tokenizer.fromFile("tokenizer.json");
const wpEncoded = await tokenizer.encode("Who is John?");
console.log(wpEncoded.getLength());
console.log(wpEncoded.getTokens());
console.log(wpEncoded.getIds());
console.log(wpEncoded.getAttentionMask());
console.log(wpEncoded.getOffsets());
console.log(wpEncoded.getOverflowing());
console.log(wpEncoded.getSpecialTokensMask());
console.log(wpEncoded.getTypeIds());
console.log(wpEncoded.getWordIds());