mirror of
https://github.com/mii443/tokenizers.git
synced 2025-08-23 08:45:38 +00:00
* nits * Fixing deps. * Ruff update. * Import order matters. * Fix. * Revert ruff fix. * Visualizer. * Putting back the imports. --------- Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
59 lines
2.2 KiB
Python
59 lines
2.2 KiB
Python
from tokenizers import CharBPETokenizer
|
|
|
|
from ..utils import data_dir, multiprocessing_with_parallelism, openai_files
|
|
|
|
|
|
class TestCharBPETokenizer:
|
|
def test_basic_encode(self, openai_files):
|
|
tokenizer = CharBPETokenizer.from_file(openai_files["vocab"], openai_files["merges"])
|
|
|
|
output = tokenizer.encode("My name is John", "pair")
|
|
assert output.ids == [0, 253, 1362, 544, 0, 7, 12662, 2688]
|
|
assert output.tokens == [
|
|
"<unk>",
|
|
"y</w>",
|
|
"name</w>",
|
|
"is</w>",
|
|
"<unk>",
|
|
"o",
|
|
"hn</w>",
|
|
"pair</w>",
|
|
]
|
|
assert output.offsets == [
|
|
(0, 1),
|
|
(1, 2),
|
|
(3, 7),
|
|
(8, 10),
|
|
(11, 12),
|
|
(12, 13),
|
|
(13, 15),
|
|
(0, 4),
|
|
]
|
|
assert output.type_ids == [0, 0, 0, 0, 0, 0, 0, 1]
|
|
|
|
def test_lowercase(self, openai_files):
|
|
tokenizer = CharBPETokenizer.from_file(openai_files["vocab"], openai_files["merges"], lowercase=True)
|
|
output = tokenizer.encode("My name is John", "pair", add_special_tokens=False)
|
|
assert output.ids == [547, 1362, 544, 2476, 2688]
|
|
assert output.tokens == ["my</w>", "name</w>", "is</w>", "john</w>", "pair</w>"]
|
|
assert output.offsets == [(0, 2), (3, 7), (8, 10), (11, 15), (0, 4)]
|
|
assert output.type_ids == [0, 0, 0, 0, 1]
|
|
|
|
def test_decoding(self, openai_files):
|
|
tokenizer = CharBPETokenizer.from_file(openai_files["vocab"], openai_files["merges"], lowercase=True)
|
|
decoded = tokenizer.decode(tokenizer.encode("my name is john").ids)
|
|
assert decoded == "my name is john"
|
|
|
|
def test_multiprocessing_with_parallelism(self, openai_files):
|
|
tokenizer = CharBPETokenizer.from_file(openai_files["vocab"], openai_files["merges"])
|
|
multiprocessing_with_parallelism(tokenizer, False)
|
|
multiprocessing_with_parallelism(tokenizer, True)
|
|
|
|
def test_train_from_iterator(self):
|
|
text = ["A first sentence", "Another sentence", "And a last one"]
|
|
tokenizer = CharBPETokenizer()
|
|
tokenizer.train_from_iterator(text, show_progress=False)
|
|
|
|
output = tokenizer.encode("A sentence")
|
|
assert output.tokens == ["A</w>", "sentence</w>"]
|