import transformers
from tokenizers.implementations import SentencePieceUnigramTokenizer, BaseTokenizer
from tokenizers.processors import TemplateProcessing
from tokenizers.models import Unigram, BPE
from tokenizers import decoders
from tokenizers import Tokenizer, Regex
from tokenizers.normalizers import (
StripAccents,
NFKD,
Lowercase,
Sequence,
BertNormalizer,
Precompiled,
Replace,
)
from tokenizers.pre_tokenizers import (
Digits,
WhitespaceSplit,
Metaspace,
Sequence as PSequence,
)
import json
import unicodedata
import sys
import os
import datetime
import argparse
sys.path.append(".")
from spm_parity_check import check_details
from sentencepiece_extractor import SentencePieceExtractor
def check_number_comma(piece: str) -> bool:
return len(piece) < 2 or piece[-1] != "," or not piece[-2].isdigit()
def get_proto(filename: str):
try:
import sys
sys.path.append(".")
import sentencepiece_model_pb2 as model
except Exception:
raise Exception(
"You don't seem to have the required protobuf file, in order to use this function you need to run `pip install protobuf` and `wget https://raw.githubusercontent.com/google/sentencepiece/master/python/sentencepiece_model_pb2.py` for us to be able to read the intrinsics of your spm_file. `pip install sentencepiece` is not required."
)
m = model.ModelProto()
m.ParseFromString(open(filename, "rb").read())
return m
class Converter:
def __init__(self, original_tokenizer):
self.original_tokenizer = original_tokenizer
def converted(self) -> Tokenizer:
raise NotImplementedError()
class SpmConverter(Converter):
def __init__(self, *args):
super().__init__(*args)
self.proto = get_proto(self.original_tokenizer.vocab_file)
def vocab(self, proto):
return [(piece.piece, piece.score) for piece in proto.pieces]
def unk_id(self, proto):
return proto.trainer_spec.unk_id
def tokenizer(self, proto):
model_type = proto.trainer_spec.model_type
vocab = self.vocab(proto)
unk_id = self.unk_id(proto)
if model_type == 1:
tokenizer = Tokenizer(Unigram(vocab, unk_id))
elif model_type == 2:
vocab, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract()
tokenizer = Tokenizer(BPE(vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True))
else:
raise Exception(
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
)
return tokenizer
def normalizer(self, proto):
precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
return Sequence([Precompiled(precompiled_charsmap), Replace(Regex(" {2,}"), " ")])
def post_processor(self, tokenizer):
return None
def converted(self):
tokenizer = self.tokenizer(self.proto)
# Tokenizer assemble
tokenizer.normalizer = self.normalizer(self.proto)
replacement = "▁"
prepend_scheme = "always"
tokenizer.pre_tokenizer = Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
tokenizer.decoder = decoders.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
post_processor = self.post_processor(tokenizer)
if post_processor:
tokenizer.post_processor = post_processor
# TODO what parameters should we give ?
parameters = {}
return BaseTokenizer(tokenizer, parameters)
class AlbertConverter(SpmConverter):
def vocab(self, proto):
return [
(piece.piece, piece.score) if check_number_comma(piece.piece) else (piece.piece, piece.score - 100)
for piece in proto.pieces
]
def normalizer(self, proto):
normalizers = [Replace("``", '"'), Replace("''", '"')]
if not self.original_tokenizer.keep_accents:
normalizers.append(NFKD())
normalizers.append(StripAccents())
if self.original_tokenizer.do_lower_case:
normalizers.append(Lowercase())
precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
normalizers.append(Precompiled(precompiled_charsmap))
normalizers.append(Replace(Regex(" {2,}"), " "))
return Sequence(normalizers)
def post_processor(self, tokenizer):
return TemplateProcessing(
seq_a=["[CLS]", "$0", "[SEP]"],
seq_b=["$1", "[SEP]"],
special_tokens=[
("[CLS]", tokenizer.get_vocab()["[CLS]"]),
("[SEP]", tokenizer.get_vocab()["[SEP]"]),
],
)
class CamembertConverter(SpmConverter):
def vocab(self, proto):
vocab = [
("NOTUSED", 0.0),
("", 0.0),
("NOTUSED", 0.0),
("", 0.0),
]
vocab += [(piece.piece, piece.score) for piece in proto.pieces]
return vocab
def unk_id(self, proto):
# See vocab unk position
return 3
def post_processor(self, tokenizer):
return TemplateProcessing(
seq_a=["", "$0", ""],
seq_b=["$1", ""],
special_tokens=[
("", tokenizer.get_vocab()[""]),
("", tokenizer.get_vocab()[""]),
],
)
class MBartConverter(SpmConverter):
def vocab(self, proto):
vocab = [
("", 0.0),
("", 0.0),
("", 0.0),
("", 0.0),
]
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
vocab += [
("ar_AR", 0.0),
("cs_CZ", 0.0),
("de_DE", 0.0),
("en_XX", 0.0),
("es_XX", 0.0),
("et_EE", 0.0),
("fi_FI", 0.0),
("fr_XX", 0.0),
("gu_IN", 0.0),
("hi_IN", 0.0),
("it_IT", 0.0),
("ja_XX", 0.0),
("kk_KZ", 0.0),
("ko_KR", 0.0),
("lt_LT", 0.0),
("lv_LV", 0.0),
("my_MM", 0.0),
("ne_NP", 0.0),
("nl_XX", 0.0),
("ro_RO", 0.0),
("ru_RU", 0.0),
("si_LK", 0.0),
("tr_TR", 0.0),
("vi_VN", 0.0),
("zh_CN", 0.0),
]
return vocab
def unk_id(self, proto):
return 3
def post_processor(self, tokenizer):
return TemplateProcessing(
seq_a=["$0", "", "en_XX"],
seq_b=["$1", ""],
special_tokens=[
("en_XX", tokenizer.get_vocab()["en_XX"]),
("", tokenizer.get_vocab()[""]),
],
)
class XLMRobertaConverter(SpmConverter):
def vocab(self, proto):
vocab = [
("", 0.0),
("", 0.0),
("", 0.0),
("", 0.0),
]
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
return vocab
def unk_id(self, proto):
unk_id = 3
return unk_id
def post_processor(self, tokenizer):
return TemplateProcessing(
seq_a=["", "$0", ""],
seq_b=["$1", ""],
special_tokens=[
("", tokenizer.get_vocab()[""]),
("", tokenizer.get_vocab()[""]),
],
)
class XLNetConverter(SpmConverter):
def vocab(self, proto):
return [
(piece.piece, piece.score) if check_number_comma(piece.piece) else (piece.piece, piece.score - 100)
for piece in proto.pieces
]
def normalizer(self, proto):
normalizers = [Replace("``", '"'), Replace("''", '"')]
if not self.original_tokenizer.keep_accents:
normalizers.append(NFKD())
normalizers.append(StripAccents())
if self.original_tokenizer.do_lower_case:
normalizers.append(Lowercase())
precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
normalizers.append(Precompiled(precompiled_charsmap))
normalizers.append(Replace(Regex(" {2,}"), " "))
return Sequence(normalizers)
def post_processor(self, tokenizer):
return TemplateProcessing(
seq_a=["$0", "", ""],
seq_b=["$1", ""],
special_tokens=[
("", tokenizer.get_vocab()[""]),
("", tokenizer.get_vocab()[""]),
],
)
class ReformerConverter(SpmConverter):
pass
class PegasusConverter(SpmConverter):
offset = 103
def vocab(self, proto):
vocab = [
(self.original_tokenizer.pad_token, 0),
(self.original_tokenizer.eos_token, 0),
]
vocab += [(f"unk_{i}", -100) for i in range(2, 2 + self.offset)]
vocab += [(piece.piece, piece.score) for piece in proto.pieces[2:]]
return vocab
def unk_id(self, proto):
return proto.trainer_spec.unk_id + self.offset
def post_processor(self, tokenizer):
eos = self.original_tokenizer.eos_token
return TemplateProcessing(
seq_a=["$0", eos],
seq_b=["$1", eos],
special_tokens=[(eos, tokenizer.get_vocab()[eos])],
)
class T5Converter(SpmConverter):
def post_processor(self, tokenizer):
return TemplateProcessing(
seq_a=["$0", ""],
seq_b=["$1", ""],
special_tokens=[("", tokenizer.get_vocab()[""])],
)
CONVERTERS = {
"AlbertTokenizer": AlbertConverter,
"CamembertTokenizer": CamembertConverter,
"XLMRobertaTokenizer": XLMRobertaConverter,
"MBartTokenizer": MBartConverter,
"XLNetTokenizer": XLNetConverter,
"ReformerTokenizer": ReformerConverter,
"PegasusTokenizer": PegasusConverter,
"T5Tokenizer": T5Converter,
}
def check(pretrained, filename):
transformer_tokenizer = transformers.AutoTokenizer.from_pretrained(pretrained)
converter_class = CONVERTERS[transformer_tokenizer.__class__.__name__]
tokenizer = converter_class(transformer_tokenizer).converted()
now = datetime.datetime.now
trans_total_time = datetime.timedelta(seconds=0)
tok_total_time = datetime.timedelta(seconds=0)
with open(filename, "r") as f:
for i, line in enumerate(f):
line = line.strip()
start = now()
ids = transformer_tokenizer.encode(line)
trans = now()
tok_ids = tokenizer.encode(line).ids
tok = now()
trans_total_time += trans - start
tok_total_time += tok - trans
if ids != tok_ids:
if check_details(line, ids, tok_ids, transformer_tokenizer, tokenizer):
continue
assert ids == tok_ids, f"Error in line {i}: {line} {ids} != {tok_ids}"
tokenizer.save(f"{pretrained.replace('/', '-')}.json")
return ("OK", trans_total_time / tok_total_time)
def main():
pretraineds = [
"albert-base-v1",
"albert-large-v1",
"albert-xlarge-v1",
"albert-xxlarge-v1",
"albert-base-v2",
"albert-large-v2",
"albert-xlarge-v2",
"albert-xxlarge-v2",
"camembert-base",
"xlm-roberta-base",
"xlm-roberta-large",
"xlm-roberta-large-finetuned-conll02-dutch",
"xlm-roberta-large-finetuned-conll02-spanish",
"xlm-roberta-large-finetuned-conll03-english",
"xlm-roberta-large-finetuned-conll03-german",
"facebook/mbart-large-en-ro",
"facebook/mbart-large-cc25",
"xlnet-base-cased",
"xlnet-large-cased",
"google/reformer-crime-and-punishment",
"t5-small",
"google/pegasus-large",
]
parser = argparse.ArgumentParser()
parser.add_argument(
"--filename",
required=True,
type=str,
help="The filename that we are going to encode in both versions to check that conversion worked",
)
parser.add_argument(
"--models",
type=lambda s: s.split(","),
default=pretraineds,
help=f"The pretrained tokenizers you want to test against, (default: {pretraineds})",
)
args = parser.parse_args()
print(args.filename)
model_len = 50
status_len = 6
speedup_len = 8
print(f"|{'Model':^{model_len}}|{'Status':^{status_len}}|{'Speedup':^{speedup_len}}|")
print(f"|{'-'*model_len}|{'-'*status_len}|{'-'*speedup_len}|")
for pretrained in args.models:
status, speedup = check(pretrained, args.filename)
print(f"|{pretrained:<{model_len}}|{status:^{status_len}}|{speedup:^{speedup_len - 1}.2f}x|")
if __name__ == "__main__":
main()