import tokenizers from argparse import ArgumentParser import sentencepiece as spm import json def main(): parser = ArgumentParser("SentencePiece parity checker") parser.add_argument( "--input-file", "-i", type=str, required=True, help="Which files do you want to train from", ) parser.add_argument( "--model-prefix", type=str, default="spm_parity", help="Model prefix for spm_train", ) parser.add_argument( "--vocab-size", "-v", type=int, default=8000, help="Vocab size for spm_train", ) args = parser.parse_args() spm.SentencePieceTrainer.Train( f"--input={args.input_file} --model_prefix={args.model_prefix}" f" --vocab_size={args.vocab_size}" ) sp = spm.SentencePieceProcessor() model_filename = f"{args.model_prefix}.model" sp.Load(model_filename) vocab_filename = f"{args.model_prefix}.json" vocab = [(sp.id_to_piece(i), sp.get_score(i)) for i in range(sp.piece_size())] data = {"unk_id": sp.unk_id(), "vocab": vocab} with open(vocab_filename, "w") as f: json.dump(data, f, indent=4) tok = tokenizers.SentencePieceUnigramTokenizer(vocab_filename) with open(args.input_file, "r") as f: for i, line in enumerate(f): line = line.strip() ids = sp.EncodeAsIds(line) encoded = tok.encode(line) if ids != encoded.ids: # Encoding can be the same with same result AAA -> A + AA vs AA + A # We just check this does not cover unk tokens if len(ids) != len(encoded.ids): N = len(ids) M = len(encoded.ids) first_index_error = [i for i in range(min(N, M)) if ids[i] != encoded.ids[i]][0] last_index_error = [ min(N, M) - i for i in range(min(N, M)) if ids[-i - 1] != encoded.ids[-i - 1] ][0] print(ids[first_index_error : last_index_error + 1]) print(encoded.ids[first_index_error : last_index_error + 1]) import ipdb ipdb.set_trace() assert len(ids) == len(encoded.ids) continue assert ids == encoded.ids, f"line {i}: {line} : {ids} != {encoded.ids}" if __name__ == "__main__": main()