Doc - Update API Reference for Encoding

This commit is contained in:
Anthony MOI
2020-10-09 12:37:21 -04:00
committed by Anthony MOI
parent 12af3f2240
commit d2fc0e4836
3 changed files with 282 additions and 77 deletions

View File

@ -7,6 +7,7 @@ use tokenizers as tk;
use crate::error::PyError;
/// The :class:`~tokenizers.Encoding` represents the output of a :class:`~tokenizers.Tokenizer`.
#[pyclass(dict, module = "tokenizers", name=Encoding)]
#[repr(transparent)]
pub struct PyEncoding {
@ -71,8 +72,20 @@ impl PyEncoding {
}
}
/// Merge the list of encodings into one final :class:`~tokenizers.Encoding`
///
/// Args:
/// encodings (A :obj:`List` of :class:`~tokenizers.Encoding`):
/// The list of encodings that should be merged in one
///
/// growing_offsets (:obj:`bool`, defaults to :obj:`True`):
/// Whether the offsets should accumulate while merging
///
/// Returns:
/// :class:`~tokenizers.Encoding`: The resulting Encoding
#[staticmethod]
#[args(growing_offsets = true)]
#[text_signature = "(encodings, growing_offsets=True)"]
fn merge(encodings: Vec<PyRef<PyEncoding>>, growing_offsets: bool) -> PyEncoding {
tk::tokenizer::Encoding::merge(
encodings.into_iter().map(|e| e.encoding.clone()),
@ -81,41 +94,103 @@ impl PyEncoding {
.into()
}
/// The generated IDs
///
/// The IDs are the main input to a Language Model. They are the token indices,
/// the numerical representations that a LM understands.
///
/// Returns:
/// :obj:`List[int]`: The list of IDs
#[getter]
fn get_ids(&self) -> Vec<u32> {
self.encoding.get_ids().to_vec()
}
/// The generated tokens
///
/// They are the string representation of the IDs.
///
/// Returns:
/// :obj:`List[str]`: The list of tokens
#[getter]
fn get_tokens(&self) -> Vec<String> {
self.encoding.get_tokens().to_vec()
}
/// The generated word indices.
///
/// They represent the index of the word associated to each token.
/// When the input is pre-tokenized, they correspond to the ID of the given input label,
/// otherwise they correspond to the words indices as defined by the
/// :class:`~tokenizers.pre_tokenizers.PreTokenizer` that was used.
///
/// For special tokens and such (any token that was generated from something that was
/// not part of the input), the output is :obj:`None`
///
/// Returns:
/// A :obj:`List` of :obj:`Optional[int]`: A list of optional word index.
#[getter]
fn get_words(&self) -> Vec<Option<u32>> {
self.encoding.get_words().to_vec()
}
/// The generated type IDs
///
/// Generally used for tasks like sequence classification or question answering,
/// these tokens let the LM know which input sequence corresponds to each tokens.
///
/// Returns:
/// :obj:`List[int]`: The list of type ids
#[getter]
fn get_type_ids(&self) -> Vec<u32> {
self.encoding.get_type_ids().to_vec()
}
/// The offsets associated to each token
///
/// These offsets let's you slice the input string, and thus retrieve the original
/// part that led to producing the corresponding token.
///
/// Returns:
/// A :obj:`List` of :obj:`Tuple[int, int]`: The list of offsets
#[getter]
fn get_offsets(&self) -> Vec<(usize, usize)> {
self.encoding.get_offsets().to_vec()
}
/// The special token mask
///
/// This indicates which tokens are special tokens, and which are not.
///
/// Returns:
/// :obj:`List[int]`: The special tokens mask
#[getter]
fn get_special_tokens_mask(&self) -> Vec<u32> {
self.encoding.get_special_tokens_mask().to_vec()
}
/// The attention mask
///
/// This indicates to the LM which tokens should be attended to, and which should not.
/// This is especially important when batching sequences, where we need to applying
/// padding.
///
/// Returns:
/// :obj:`List[int]`: The attention mask
#[getter]
fn get_attention_mask(&self) -> Vec<u32> {
self.encoding.get_attention_mask().to_vec()
}
/// A :obj:`List` of overflowing :class:`~tokenizers.Encoding`
///
/// When using truncation, the :class:`~tokenizers.Tokenizer` takes care of splitting
/// the output into as many pieces as required to match the specified maximum length.
/// This field lets you retrieve all the subsequent pieces.
///
/// When you use pairs of sequences, the overflowing pieces will contain enough
/// variations to cover all the possible combinations, while respecting the provided
/// maximum length.
#[getter]
fn get_overflowing(&self) -> Vec<PyEncoding> {
self.encoding
@ -126,31 +201,104 @@ impl PyEncoding {
.collect()
}
/// Get the encoded tokens corresponding to the word at the given index
/// in the input sequence.
///
/// Args:
/// word_index (:obj:`int`):
/// The index of a word in the input sequence.
///
/// Returns:
/// :obj:`Tuple[int, int]`: The range of tokens: :obj:`(first, last + 1)`
#[text_signature = "($self, word_index)"]
fn word_to_tokens(&self, word_index: u32) -> Option<(usize, usize)> {
self.encoding.word_to_tokens(word_index)
}
/// Get the offsets of the word at the given index in the input sequence.
///
/// Args:
/// word_index (:obj:`int`):
/// The index of a word in the input sequence.
///
/// Returns:
/// :obj:`Tuple[int, int]`: The range of characters (span) :obj:`(first, last + 1)`
#[text_signature = "($self, word_index)"]
fn word_to_chars(&self, word_index: u32) -> Option<Offsets> {
self.encoding.word_to_chars(word_index)
}
/// Get the offsets of the token at the given index
///
/// Args:
/// token_index (:obj:`int`):
/// The index of a token in the encoded sequence.
///
/// Returns:
/// :obj:`Tuple[int, int]`: The token offsets :obj:`(first, last + 1)`
#[text_signature = "($self, token_index)"]
fn token_to_chars(&self, token_index: usize) -> Option<Offsets> {
self.encoding.token_to_chars(token_index)
}
/// Get the word that contains the token at the given index
///
/// Args:
/// token_index (:obj:`int`):
/// The index of a token in the encoded sequence.
///
/// Returns:
/// :obj:`int`: The index of the word in the input sequence.
#[text_signature = "($self, token_index)"]
fn token_to_word(&self, token_index: usize) -> Option<u32> {
self.encoding.token_to_word(token_index)
}
/// Get the token that contains the char at the given position
///
/// Args:
/// char_pos (:obj:`int`):
/// The position of a char in the input string
///
/// Returns:
/// :obj:`int`: The index of the token that contains this char in the encoded sequence
#[text_signature = "($self, char_pos)"]
fn char_to_token(&self, char_pos: usize) -> Option<usize> {
self.encoding.char_to_token(char_pos)
}
/// Get the word that contains the char at the given position
///
/// Args:
/// char_pos (:obj:`int`):
/// The position of a char in the input string
///
/// Returns:
/// :obj:`int`: The index of the word that contains this char in the input sequence
#[text_signature = "($self, char_pos)"]
fn char_to_word(&self, char_pos: usize) -> Option<u32> {
self.encoding.char_to_word(char_pos)
}
/// Pad the :class:`~tokenizers.Encoding` at the given length
///
/// Args:
/// length (:obj:`int`):
/// The desired length
///
/// direction: (:obj:`str`, defaults to :obj:`right`):
/// The expected padding direction. Can be either :obj:`right` or :obj:`left`
///
/// pad_id (:obj:`int`, defaults to :obj:`0`):
/// The ID corresponding to the padding token
///
/// pad_type_id (:obj:`int`, defaults to :obj:`0`):
/// The type ID corresponding to the padding token
///
/// pad_token (:obj:`str`, defaults to `[PAD]`):
/// The pad token to use
#[args(kwargs = "**")]
#[text_signature = "($self, length, direction='right', pad_id=0, pad_type_id=0, pad_token='[PAD]')"]
fn pad(&mut self, length: usize, kwargs: Option<&PyDict>) -> PyResult<()> {
let mut pad_id = 0;
let mut pad_type_id = 0;
@ -186,19 +334,17 @@ impl PyEncoding {
Ok(())
}
#[args(kwargs = "**")]
fn truncate(&mut self, max_length: usize, kwargs: Option<&PyDict>) -> PyResult<()> {
let mut stride = 0;
if let Some(kwargs) = kwargs {
for (key, value) in kwargs {
let key: &str = key.extract()?;
match key {
"stride" => stride = value.extract()?,
_ => println!("Ignored unknown kwarg option {}", key),
}
}
}
/// Truncate the :class:`~tokenizers.Encoding` at the given length
///
/// Args:
/// max_length (:obj:`int`):
/// The desired length
///
/// stride (:obj:`int`, defaults to :obj:`0`):
/// The length of previous content to be included in each overflowing piece
#[args(stride = "0")]
#[text_signature = "($self, max_length, stride=0)"]
fn truncate(&mut self, max_length: usize, stride: usize) -> PyResult<()> {
self.encoding.truncate(max_length, stride);
Ok(())
}