Support None to reset pre_tokenizers and normalizers, and index sequences (#1590)

* initial commit

* support None

* fix clippy

* cleanup

* clean?

* propagate to pre_tokenizer

* fix test

* fix rust tests

* fix node

* propagate to decoder and post processor

* fix calls

* lint

* fmt

* node be happy I am fixing you

* initial commit

* support None

* fix clippy

* cleanup

* clean?

* propagate to pre_tokenizer

* fix test

* fix rust tests

* fix node

* propagate to decoder and post processor

* fix calls

* lint

* fmt

* node be happy I am fixing you

* add a small test

* styling

* style merge

* fix merge test

* fmt

* nits

* update tset
This commit is contained in:
Arthur
2024-08-07 12:52:35 +02:00
committed by GitHub
parent eea8e1ae6f
commit bded212356
13 changed files with 134 additions and 67 deletions

View File

@ -208,7 +208,7 @@ impl Tokenizer {
.tokenizer
.write()
.unwrap()
.with_pre_tokenizer((*pre_tokenizer).clone());
.with_pre_tokenizer(Some((*pre_tokenizer).clone()));
}
#[napi]
@ -217,7 +217,7 @@ impl Tokenizer {
.tokenizer
.write()
.unwrap()
.with_decoder((*decoder).clone());
.with_decoder(Some((*decoder).clone()));
}
#[napi]
@ -231,7 +231,7 @@ impl Tokenizer {
.tokenizer
.write()
.unwrap()
.with_post_processor((*post_processor).clone());
.with_post_processor(Some((*post_processor).clone()));
}
#[napi]
@ -240,7 +240,7 @@ impl Tokenizer {
.tokenizer
.write()
.unwrap()
.with_normalizer((*normalizer).clone());
.with_normalizer(Some((*normalizer).clone()));
}
#[napi]

View File

@ -1,8 +1,6 @@
use std::sync::{Arc, RwLock};
use pyo3::exceptions;
use pyo3::prelude::*;
use pyo3::types::*;
use pyo3::{exceptions, prelude::*};
use std::sync::{Arc, RwLock};
use crate::error::ToPyResult;
use crate::utils::{PyNormalizedString, PyNormalizedStringRefMut, PyPattern};
@ -354,6 +352,7 @@ impl PyNFKC {
/// A list of Normalizer to be run as a sequence
#[pyclass(extends=PyNormalizer, module = "tokenizers.normalizers", name = "Sequence")]
pub struct PySequence {}
#[pymethods]
impl PySequence {
#[new]
@ -380,6 +379,22 @@ impl PySequence {
fn __len__(&self) -> usize {
0
}
fn __getitem__(self_: PyRef<'_, Self>, py: Python<'_>, index: usize) -> PyResult<Py<PyAny>> {
match &self_.as_ref().normalizer {
PyNormalizerTypeWrapper::Sequence(inner) => match inner.get(index) {
Some(item) => PyNormalizer::new(PyNormalizerTypeWrapper::Single(Arc::clone(item)))
.get_as_subtype(py),
_ => Err(PyErr::new::<pyo3::exceptions::PyIndexError, _>(
"Index not found",
)),
},
PyNormalizerTypeWrapper::Single(inner) => {
PyNormalizer::new(PyNormalizerTypeWrapper::Single(Arc::clone(inner)))
.get_as_subtype(py)
}
}
}
}
/// Lowercase Normalizer

View File

@ -463,6 +463,24 @@ impl PySequence {
fn __getnewargs__<'p>(&self, py: Python<'p>) -> Bound<'p, PyTuple> {
PyTuple::new_bound(py, [PyList::empty_bound(py)])
}
fn __getitem__(self_: PyRef<'_, Self>, py: Python<'_>, index: usize) -> PyResult<Py<PyAny>> {
match &self_.as_ref().pretok {
PyPreTokenizerTypeWrapper::Sequence(inner) => match inner.get(index) {
Some(item) => {
PyPreTokenizer::new(PyPreTokenizerTypeWrapper::Single(Arc::clone(item)))
.get_as_subtype(py)
}
_ => Err(PyErr::new::<pyo3::exceptions::PyIndexError, _>(
"Index not found",
)),
},
PyPreTokenizerTypeWrapper::Single(inner) => {
PyPreTokenizer::new(PyPreTokenizerTypeWrapper::Single(Arc::clone(inner)))
.get_as_subtype(py)
}
}
}
}
pub(crate) fn from_string(string: String) -> Result<PrependScheme, PyErr> {

View File

@ -1371,8 +1371,9 @@ impl PyTokenizer {
/// Set the :class:`~tokenizers.normalizers.Normalizer`
#[setter]
fn set_normalizer(&mut self, normalizer: PyRef<PyNormalizer>) {
self.tokenizer.with_normalizer(normalizer.clone());
fn set_normalizer(&mut self, normalizer: Option<PyRef<PyNormalizer>>) {
let normalizer_option = normalizer.map(|norm| norm.clone());
self.tokenizer.with_normalizer(normalizer_option);
}
/// The `optional` :class:`~tokenizers.pre_tokenizers.PreTokenizer` in use by the Tokenizer
@ -1387,8 +1388,9 @@ impl PyTokenizer {
/// Set the :class:`~tokenizers.normalizers.Normalizer`
#[setter]
fn set_pre_tokenizer(&mut self, pretok: PyRef<PyPreTokenizer>) {
self.tokenizer.with_pre_tokenizer(pretok.clone());
fn set_pre_tokenizer(&mut self, pretok: Option<PyRef<PyPreTokenizer>>) {
self.tokenizer
.with_pre_tokenizer(pretok.map(|pre| pre.clone()));
}
/// The `optional` :class:`~tokenizers.processors.PostProcessor` in use by the Tokenizer
@ -1403,8 +1405,9 @@ impl PyTokenizer {
/// Set the :class:`~tokenizers.processors.PostProcessor`
#[setter]
fn set_post_processor(&mut self, processor: PyRef<PyPostProcessor>) {
self.tokenizer.with_post_processor(processor.clone());
fn set_post_processor(&mut self, processor: Option<PyRef<PyPostProcessor>>) {
self.tokenizer
.with_post_processor(processor.map(|p| p.clone()));
}
/// The `optional` :class:`~tokenizers.decoders.Decoder` in use by the Tokenizer
@ -1419,8 +1422,8 @@ impl PyTokenizer {
/// Set the :class:`~tokenizers.decoders.Decoder`
#[setter]
fn set_decoder(&mut self, decoder: PyRef<PyDecoder>) {
self.tokenizer.with_decoder(decoder.clone());
fn set_decoder(&mut self, decoder: Option<PyRef<PyDecoder>>) {
self.tokenizer.with_decoder(decoder.map(|d| d.clone()));
}
}
@ -1436,10 +1439,12 @@ mod test {
#[test]
fn serialize() {
let mut tokenizer = Tokenizer::new(PyModel::from(BPE::default()));
tokenizer.with_normalizer(PyNormalizer::new(PyNormalizerTypeWrapper::Sequence(vec![
tokenizer.with_normalizer(Some(PyNormalizer::new(PyNormalizerTypeWrapper::Sequence(
vec![
Arc::new(RwLock::new(NFKC.into())),
Arc::new(RwLock::new(Lowercase.into())),
])));
],
))));
let tmp = NamedTempFile::new().unwrap().into_temp_path();
tokenizer.save(&tmp, false).unwrap();
@ -1450,10 +1455,12 @@ mod test {
#[test]
fn serde_pyo3() {
let mut tokenizer = Tokenizer::new(PyModel::from(BPE::default()));
tokenizer.with_normalizer(PyNormalizer::new(PyNormalizerTypeWrapper::Sequence(vec![
tokenizer.with_normalizer(Some(PyNormalizer::new(PyNormalizerTypeWrapper::Sequence(
vec![
Arc::new(RwLock::new(NFKC.into())),
Arc::new(RwLock::new(Lowercase.into())),
])));
],
))));
let output = crate::utils::serde_pyo3::to_string(&tokenizer).unwrap();
assert_eq!(output, "Tokenizer(version=\"1.0\", truncation=None, padding=None, added_tokens=[], normalizer=Sequence(normalizers=[NFKC(), Lowercase()]), pre_tokenizer=None, post_processor=None, decoder=None, model=BPE(dropout=None, unk_token=None, continuing_subword_prefix=None, end_of_word_suffix=None, fuse_unk=False, byte_fallback=False, ignore_merges=False, vocab={}, merges=[]))");

View File

@ -67,6 +67,14 @@ class TestSequence:
output = normalizer.normalize_str(" HELLO ")
assert output == "hello"
def test_items(self):
normalizers = Sequence([BertNormalizer(True, True), Prepend()])
assert normalizers[1].__class__ == Prepend
normalizers[0].lowercase = False
assert not normalizers[0].lowercase
with pytest.raises(IndexError):
print(normalizers[2])
class TestLowercase:
def test_instantiate(self):

View File

@ -169,6 +169,13 @@ class TestSequence:
("?", (29, 30)),
]
def test_items(self):
pre_tokenizers = Sequence([Metaspace("a", "never", split=True), Punctuation()])
assert pre_tokenizers[1].__class__ == Punctuation
assert pre_tokenizers[0].__class__ == Metaspace
pre_tokenizers[0].split = False
assert not pre_tokenizers[0].split
class TestDigits:
def test_instantiate(self):

View File

@ -6,10 +6,11 @@ import pytest
from tokenizers import AddedToken, Encoding, Tokenizer
from tokenizers.implementations import BertWordPieceTokenizer
from tokenizers.models import BPE, Model, Unigram
from tokenizers.pre_tokenizers import ByteLevel
from tokenizers.pre_tokenizers import ByteLevel, Metaspace
from tokenizers.processors import RobertaProcessing, TemplateProcessing
from tokenizers.normalizers import Strip, Lowercase, Sequence
from ..utils import bert_files, data_dir, multiprocessing_with_parallelism, roberta_files
@ -551,6 +552,16 @@ class TestTokenizer:
assert output == "name is john"
assert tokenizer.get_added_tokens_decoder()[0] == AddedToken("my", special=True)
def test_setting_to_none(self):
tokenizer = Tokenizer(BPE())
tokenizer.normalizer = Strip()
tokenizer.normalizer = None
assert tokenizer.normalizer == None
tokenizer.pre_tokenizer = Metaspace()
tokenizer.pre_tokenizer = None
assert tokenizer.pre_tokenizer == None
class TestTokenizerRepr:
def test_repr(self):

View File

@ -34,13 +34,13 @@ fn create_bert_tokenizer(wp: WordPiece) -> BertTokenizer {
let sep_id = *wp.get_vocab().get("[SEP]").unwrap();
let cls_id = *wp.get_vocab().get("[CLS]").unwrap();
let mut tokenizer = TokenizerImpl::new(wp);
tokenizer.with_pre_tokenizer(BertPreTokenizer);
tokenizer.with_normalizer(BertNormalizer::default());
tokenizer.with_decoder(decoders::wordpiece::WordPiece::default());
tokenizer.with_post_processor(BertProcessing::new(
tokenizer.with_pre_tokenizer(Some(BertPreTokenizer));
tokenizer.with_normalizer(Some(BertNormalizer::default()));
tokenizer.with_decoder(Some(decoders::wordpiece::WordPiece::default()));
tokenizer.with_post_processor(Some(BertProcessing::new(
("[SEP]".to_string(), sep_id),
("[CLS]".to_string(), cls_id),
));
)));
tokenizer
}
@ -81,7 +81,7 @@ fn bench_train(c: &mut Criterion) {
DecoderWrapper,
>;
let mut tokenizer = Tok::new(WordPiece::default());
tokenizer.with_pre_tokenizer(Whitespace {});
tokenizer.with_pre_tokenizer(Some(Whitespace {}));
c.bench_function("WordPiece Train vocabulary (small)", |b| {
b.iter_custom(|iters| {
iter_bench_train(
@ -94,7 +94,7 @@ fn bench_train(c: &mut Criterion) {
});
let mut tokenizer = Tok::new(WordPiece::default());
tokenizer.with_pre_tokenizer(Whitespace {});
tokenizer.with_pre_tokenizer(Some(Whitespace {}));
c.bench_function("WordPiece Train vocabulary (big)", |b| {
b.iter_custom(|iters| {
iter_bench_train(

View File

@ -22,8 +22,8 @@ static BATCH_SIZE: usize = 1_000;
fn create_gpt2_tokenizer(bpe: BPE) -> Tokenizer {
let mut tokenizer = Tokenizer::new(bpe);
tokenizer.with_pre_tokenizer(ByteLevel::default());
tokenizer.with_decoder(ByteLevel::default());
tokenizer.with_pre_tokenizer(Some(ByteLevel::default()));
tokenizer.with_decoder(Some(ByteLevel::default()));
tokenizer.add_tokens(&[AddedToken::from("ing", false).single_word(false)]);
tokenizer.add_special_tokens(&[AddedToken::from("[ENT]", true).single_word(true)]);
tokenizer
@ -74,7 +74,7 @@ fn bench_train(c: &mut Criterion) {
.build()
.into();
let mut tokenizer = Tokenizer::new(BPE::default()).into_inner();
tokenizer.with_pre_tokenizer(Whitespace {});
tokenizer.with_pre_tokenizer(Some(Whitespace {}));
c.bench_function("BPE Train vocabulary (small)", |b| {
b.iter_custom(|iters| {
iter_bench_train(
@ -87,7 +87,7 @@ fn bench_train(c: &mut Criterion) {
});
let mut tokenizer = Tokenizer::new(BPE::default()).into_inner();
tokenizer.with_pre_tokenizer(Whitespace {});
tokenizer.with_pre_tokenizer(Some(Whitespace {}));
c.bench_function("BPE Train vocabulary (big)", |b| {
b.iter_custom(|iters| {
iter_bench_train(

View File

@ -550,19 +550,18 @@ where
}
/// Set the normalizer
pub fn with_normalizer(&mut self, normalizer: impl Into<N>) -> &mut Self {
self.normalizer = Some(normalizer.into());
pub fn with_normalizer(&mut self, normalizer: Option<impl Into<N>>) -> &mut Self {
self.normalizer = normalizer.map(|norm| norm.into());
self
}
/// Get the normalizer
pub fn get_normalizer(&self) -> Option<&N> {
self.normalizer.as_ref()
}
/// Set the pre tokenizer
pub fn with_pre_tokenizer(&mut self, pre_tokenizer: impl Into<PT>) -> &mut Self {
self.pre_tokenizer = Some(pre_tokenizer.into());
pub fn with_pre_tokenizer(&mut self, pre_tokenizer: Option<impl Into<PT>>) -> &mut Self {
self.pre_tokenizer = pre_tokenizer.map(|tok| tok.into());
self
}
@ -572,8 +571,8 @@ where
}
/// Set the post processor
pub fn with_post_processor(&mut self, post_processor: impl Into<PP>) -> &mut Self {
self.post_processor = Some(post_processor.into());
pub fn with_post_processor(&mut self, post_processor: Option<impl Into<PP>>) -> &mut Self {
self.post_processor = post_processor.map(|post_proc| post_proc.into());
self
}
@ -583,8 +582,8 @@ where
}
/// Set the decoder
pub fn with_decoder(&mut self, decoder: impl Into<D>) -> &mut Self {
self.decoder = Some(decoder.into());
pub fn with_decoder(&mut self, decoder: Option<impl Into<D>>) -> &mut Self {
self.decoder = decoder.map(|dec| dec.into());
self
}

View File

@ -23,9 +23,11 @@ pub fn get_byte_level_bpe() -> BPE {
pub fn get_byte_level(add_prefix_space: bool, trim_offsets: bool) -> Tokenizer {
let mut tokenizer = Tokenizer::new(get_byte_level_bpe());
tokenizer
.with_pre_tokenizer(ByteLevel::default().add_prefix_space(add_prefix_space))
.with_decoder(ByteLevel::default())
.with_post_processor(ByteLevel::default().trim_offsets(trim_offsets));
.with_pre_tokenizer(Some(
ByteLevel::default().add_prefix_space(add_prefix_space),
))
.with_decoder(Some(ByteLevel::default()))
.with_post_processor(Some(ByteLevel::default().trim_offsets(trim_offsets)));
tokenizer
}
@ -43,13 +45,13 @@ pub fn get_bert() -> Tokenizer {
let sep = tokenizer.get_model().token_to_id("[SEP]").unwrap();
let cls = tokenizer.get_model().token_to_id("[CLS]").unwrap();
tokenizer
.with_normalizer(BertNormalizer::default())
.with_pre_tokenizer(BertPreTokenizer)
.with_decoder(WordPieceDecoder::default())
.with_post_processor(BertProcessing::new(
.with_normalizer(Some(BertNormalizer::default()))
.with_pre_tokenizer(Some(BertPreTokenizer))
.with_decoder(Some(WordPieceDecoder::default()))
.with_post_processor(Some(BertProcessing::new(
(String::from("[SEP]"), sep),
(String::from("[CLS]"), cls),
));
)));
tokenizer
}

View File

@ -93,7 +93,7 @@ fn quicktour_slow_train() -> tokenizers::Result<()> {
// START quicktour_init_pretok
use tokenizers::pre_tokenizers::whitespace::Whitespace;
tokenizer.with_pre_tokenizer(Whitespace {});
tokenizer.with_pre_tokenizer(Some(Whitespace {}));
// END quicktour_init_pretok
// START quicktour_train
@ -157,7 +157,7 @@ fn quicktour() -> tokenizers::Result<()> {
("[CLS]", tokenizer.token_to_id("[CLS]").unwrap()),
("[SEP]", tokenizer.token_to_id("[SEP]").unwrap()),
];
tokenizer.with_post_processor(
tokenizer.with_post_processor(Some(
TemplateProcessing::builder()
.try_single("[CLS] $A [SEP]")
.unwrap()
@ -165,7 +165,7 @@ fn quicktour() -> tokenizers::Result<()> {
.unwrap()
.special_tokens(special_tokens)
.build()?,
);
));
// END quicktour_init_template_processing
// START quicktour_print_special_tokens
let output = tokenizer.encode("Hello, y'all! How are you 😁 ?", true)?;
@ -261,7 +261,7 @@ fn pipeline() -> tokenizers::Result<()> {
// END pipeline_test_normalizer
assert_eq!(normalized.get(), "Hello how are u?");
// START pipeline_replace_normalizer
tokenizer.with_normalizer(normalizer);
tokenizer.with_normalizer(Some(normalizer));
// END pipeline_replace_normalizer
// START pipeline_setup_pre_tokenizer
use tokenizers::pre_tokenizers::whitespace::Whitespace;
@ -325,12 +325,12 @@ fn pipeline() -> tokenizers::Result<()> {
]
);
// START pipeline_replace_pre_tokenizer
tokenizer.with_pre_tokenizer(pre_tokenizer);
tokenizer.with_pre_tokenizer(Some(pre_tokenizer));
// END pipeline_replace_pre_tokenizer
// START pipeline_setup_processor
use tokenizers::processors::template::TemplateProcessing;
tokenizer.with_post_processor(
tokenizer.with_post_processor(Some(
TemplateProcessing::builder()
.try_single("[CLS] $A [SEP]")
.unwrap()
@ -339,7 +339,7 @@ fn pipeline() -> tokenizers::Result<()> {
.special_tokens(vec![("[CLS]", 1), ("[SEP]", 2)])
.build()
.unwrap(),
);
));
// END pipeline_setup_processor
// START pipeline_test_decoding
let output = tokenizer.encode("Hello, y'all! How are you 😁 ?", true)?;
@ -375,21 +375,21 @@ fn train_pipeline_bert() -> tokenizers::Result<()> {
use tokenizers::normalizers::utils::Sequence as NormalizerSequence;
use tokenizers::normalizers::{strip::StripAccents, unicode::NFD, utils::Lowercase};
bert_tokenizer.with_normalizer(NormalizerSequence::new(vec![
bert_tokenizer.with_normalizer(Some(NormalizerSequence::new(vec![
NFD.into(),
Lowercase.into(),
StripAccents.into(),
]));
])));
// END bert_setup_normalizer
// START bert_setup_pre_tokenizer
use tokenizers::pre_tokenizers::whitespace::Whitespace;
bert_tokenizer.with_pre_tokenizer(Whitespace {});
bert_tokenizer.with_pre_tokenizer(Some(Whitespace {}));
// END bert_setup_pre_tokenizer
// START bert_setup_processor
use tokenizers::processors::template::TemplateProcessing;
bert_tokenizer.with_post_processor(
bert_tokenizer.with_post_processor(Some(
TemplateProcessing::builder()
.try_single("[CLS] $A [SEP]")
.unwrap()
@ -398,7 +398,7 @@ fn train_pipeline_bert() -> tokenizers::Result<()> {
.special_tokens(vec![("[CLS]", 1), ("[SEP]", 2)])
.build()
.unwrap(),
);
));
// END bert_setup_processor
// START bert_train_tokenizer
use tokenizers::models::{wordpiece::WordPieceTrainer, TrainerWrapper};
@ -450,7 +450,7 @@ fn pipeline_bert() -> tokenizers::Result<()> {
// START bert_proper_decoding
use tokenizers::decoders::wordpiece::WordPiece as WordPieceDecoder;
bert_tokenizer.with_decoder(WordPieceDecoder::default());
bert_tokenizer.with_decoder(Some(WordPieceDecoder::default()));
let decoded = bert_tokenizer.decode(output.get_ids(), true)?;
// "welcome to the tokenizers library."
// END bert_proper_decoding

View File

@ -203,7 +203,7 @@ fn models() {
fn tokenizer() {
let wordpiece = WordPiece::default();
let mut tokenizer = Tokenizer::new(wordpiece);
tokenizer.with_normalizer(NFC);
tokenizer.with_normalizer(Some(NFC));
let ser = serde_json::to_string(&tokenizer).unwrap();
let _: Tokenizer = serde_json::from_str(&ser).unwrap();
let unwrapped_nfc_tok: TokenizerImpl<