Fix SentencePiece tokenizers conversion

This commit is contained in:
Anthony MOI
2021-02-03 09:57:41 -05:00
committed by Anthony MOI
parent fc0a50a272
commit 96b9972842
4 changed files with 33 additions and 45 deletions

View File

@@ -4,6 +4,11 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [Unreleased]
### Fixed
- [#616]: Fix SentencePiece tokenizers conversion
## [0.10.0]
### Added
@@ -22,7 +27,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
`tokenizer.model.dropout = 0.1`)
- [#538]: The API Reference has been improved and is now up-to-date.
## Fixed
### Fixed
- [#519]: During training, the `Model` is now trained in-place. This fixes several bugs that were
forcing to reload the `Model` after a training.
- [#539]: Fix `BaseTokenizer` enable_truncation docstring
@@ -293,6 +298,7 @@ delimiter (Works like `.split(delimiter)`)
- Fix a bug that was causing crashes in Python 3.5
[#616]: https://github.com/huggingface/tokenizers/pull/616
[#590]: https://github.com/huggingface/tokenizers/pull/590
[#574]: https://github.com/huggingface/tokenizers/pull/574
[#544]: https://github.com/huggingface/tokenizers/pull/544

View File

@@ -1,11 +1,4 @@
from tokenizers import (
Tokenizer,
AddedToken,
pre_tokenizers,
decoders,
trainers,
normalizers,
)
from tokenizers import Tokenizer, AddedToken, pre_tokenizers, decoders, trainers, normalizers, Regex
import os
from tokenizers.models import Unigram
import json
@@ -33,18 +26,10 @@ class SentencePieceUnigramTokenizer(BaseTokenizer):
tokenizer = Tokenizer(Unigram())
tokenizer.normalizer = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
]
[normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}"), " ")]
)
tokenizer.pre_tokenizer = pre_tokenizers.Sequence(
[
pre_tokenizers.WhitespaceSplit(),
pre_tokenizers.Metaspace(
replacement=replacement, add_prefix_space=add_prefix_space
),
]
tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(
replacement=replacement, add_prefix_space=add_prefix_space
)
tokenizer.decoder = decoders.Metaspace(
replacement=replacement, add_prefix_space=add_prefix_space
@@ -124,15 +109,15 @@ class SentencePieceUnigramTokenizer(BaseTokenizer):
tokenizer = Tokenizer(Unigram(vocab, unk_id))
tokenizer.normalizer = normalizers.Precompiled(precompiled_charsmap)
tokenizer.pre_tokenizer = pre_tokenizers.Sequence(
tokenizer.normalizer = normalizers.Sequence(
[
pre_tokenizers.WhitespaceSplit(),
pre_tokenizers.Metaspace(
replacement=replacement, add_prefix_space=add_prefix_space
),
normalizers.Precompiled(precompiled_charsmap),
normalizers.Replace(Regex(" {2,}"), " "),
]
)
tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(
replacement=replacement, add_prefix_space=add_prefix_space
)
tokenizer.decoder = decoders.Metaspace(
replacement=replacement, add_prefix_space=add_prefix_space
)

View File

@@ -3,7 +3,7 @@ from tokenizers.implementations import SentencePieceUnigramTokenizer, BaseTokeni
from tokenizers.processors import TemplateProcessing
from tokenizers.models import Unigram, BPE
from tokenizers import decoders
from tokenizers import Tokenizer
from tokenizers import Tokenizer, Regex
from tokenizers.normalizers import (
StripAccents,
NFKD,
@@ -81,7 +81,7 @@ class SpmConverter(Converter):
elif model_type == 2:
vocab, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract()
tokenizer = Tokenizer(
BPE(vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True,)
BPE(vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True)
)
else:
raise Exception(
@@ -92,7 +92,7 @@ class SpmConverter(Converter):
def normalizer(self, proto):
precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
return Precompiled(precompiled_charsmap)
return Sequence([Precompiled(precompiled_charsmap), Replace(Regex(" {2,}"), " ")])
def post_processor(self, tokenizer):
return None
@@ -105,11 +105,8 @@ class SpmConverter(Converter):
replacement = ""
add_prefix_space = True
tokenizer.pre_tokenizer = PSequence(
[
WhitespaceSplit(),
Metaspace(replacement=replacement, add_prefix_space=add_prefix_space),
]
tokenizer.pre_tokenizer = Metaspace(
replacement=replacement, add_prefix_space=add_prefix_space
)
tokenizer.decoder = decoders.Metaspace(
replacement=replacement, add_prefix_space=add_prefix_space
@@ -134,7 +131,7 @@ class AlbertConverter(SpmConverter):
]
def normalizer(self, proto):
normalizers = [Replace("``", '"'), Replace("''", '"')]
normalizers = [Replace("``", '"'), Replace("''", '"'), Replace(Regex(" {2,}"), " ")]
if not self.original_tokenizer.keep_accents:
normalizers.append(NFKD())
normalizers.append(StripAccents())
@@ -270,7 +267,7 @@ class XLNetConverter(SpmConverter):
]
def normalizer(self, proto):
normalizers = [Replace("``", '"'), Replace("''", '"')]
normalizers = [Replace("``", '"'), Replace("''", '"'), Replace(Regex(" {2,}"), " ")]
if not self.original_tokenizer.keep_accents:
normalizers.append(NFKD())
normalizers.append(StripAccents())
@@ -316,7 +313,7 @@ class PegasusConverter(SpmConverter):
return TemplateProcessing(
seq_a=["$0", eos],
seq_b=["$1", eos],
special_tokens=[(eos, tokenizer.get_vocab()[eos]),],
special_tokens=[(eos, tokenizer.get_vocab()[eos])],
)
@@ -325,7 +322,7 @@ class T5Converter(SpmConverter):
return TemplateProcessing(
seq_a=["$0", "</s>"],
seq_b=["$1", "</s>"],
special_tokens=[("</s>", tokenizer.get_vocab()["</s>"]),],
special_tokens=[("</s>", tokenizer.get_vocab()["</s>"])],
)

View File

@@ -131,12 +131,12 @@ def check_diff(spm_diff, tok_diff, sp, tok):
if spm_diff == list(reversed(tok_diff)):
# AAA -> AA+A vs A+AA case.
return True
# elif len(spm_diff) == len(tok_diff) and tok.decode(spm_diff) == tok.decode(
# tok_diff
# ):
# # Second order OK
# # Barrich -> Barr + ich vs Bar + rich
# return True
elif len(spm_diff) == len(tok_diff) and tok.decode(spm_diff) == tok.decode(
tok_diff
):
# Second order OK
# Barrich -> Barr + ich vs Bar + rich
return True
spm_reencoded = sp.encode(sp.decode(spm_diff))
tok_reencoded = tok.encode(tok.decode(spm_diff)).ids
if spm_reencoded != spm_diff and spm_reencoded == tok_reencoded:
@@ -265,7 +265,7 @@ def check_encode(args):
else:
perfect += 1
assert ids == encoded.ids, f"line {i}: {line} : {ids} != {encoded.ids}"
assert ids == encoded.ids, f"line {i}: {line} : \n\n{ids}\n{encoded.ids}\n{list(zip(encoded.ids, encoded.tokens))}"
print(f"({perfect} / {imperfect} / {wrong} ----- {perfect + imperfect + wrong})")
total = perfect + imperfect + wrong