mirror of
https://github.com/mii443/tokenizers.git
synced 2025-08-22 16:25:30 +00:00
Doc - Update Bert example on the Pipeline page
This commit is contained in:
@ -7,7 +7,7 @@ describe("pipelineExample", () => {
|
||||
return globRequire("../../lib/" + path);
|
||||
}
|
||||
|
||||
it("", async () => {
|
||||
it("shows pipeline parts", async () => {
|
||||
// START reload_tokenizer
|
||||
let { Tokenizer } = require("tokenizers/bindings/tokenizer");
|
||||
|
||||
@ -57,5 +57,64 @@ describe("pipelineExample", () => {
|
||||
// START replace_pre_tokenizer
|
||||
tokenizer.setPreTokenizer(preTokenizer)
|
||||
// END replace_pre_tokenizer
|
||||
// START setup_processor
|
||||
let { templateProcessing } = require("tokenizers/bindings/processors");
|
||||
|
||||
tokenizer.setPostProcessor(templateProcessing(
|
||||
"[CLS] $A [SEP]",
|
||||
"[CLS] $A [SEP] $B:1 [SEP]:1",
|
||||
[["[CLS]", 1], ["[SEP]", 2]]
|
||||
));
|
||||
// END setup_processor
|
||||
});
|
||||
|
||||
it("shows a full bert example", async () => {
|
||||
// START bert_setup_tokenizer
|
||||
let { Tokenizer } = require("tokenizers/bindings/tokenizer");
|
||||
let { WordPiece } = require("tokenizers/bindings/models");
|
||||
|
||||
let bert_tokenizer = Tokenizer(WordPiece.empty());
|
||||
// END bert_setup_tokenizer
|
||||
// START bert_setup_normalizer
|
||||
let { sequenceNormalizer, lowercaseNormalizer, nfdNormalizer, stripAccentsNormalizer }
|
||||
= require("tokenizers/bindings/normalizers");
|
||||
|
||||
bert_tokenizer.setNormalizer(sequenceNormalizer([
|
||||
nfdNormalizer(), lowercaseNormalizer(), stripAccentsNormalizer()
|
||||
]))
|
||||
// END bert_setup_normalizer
|
||||
// START bert_setup_pre_tokenizer
|
||||
let { whitespacePreTokenizer } = require("tokenizers/bindings/pre_tokenizers");
|
||||
|
||||
bert_tokenizer.setPreTokenizer = whitespacePreTokenizer();
|
||||
// END bert_setup_pre_tokenizer
|
||||
// START bert_setup_processor
|
||||
let { templateProcessing } = require("tokenizers/bindings/processors");
|
||||
|
||||
bert_tokenizer.setPostProcessor(templateProcessing(
|
||||
"[CLS] $A [SEP]",
|
||||
"[CLS] $A [SEP] $B:1 [SEP]:1",
|
||||
[["[CLS]", 1], ["[SEP]", 2]]
|
||||
));
|
||||
// END bert_setup_processor
|
||||
// START bert_train_tokenizer
|
||||
let { wordPieceTrainer } = require("tokenizers/bindings/trainers");
|
||||
let { promisify } = require("utils");
|
||||
|
||||
let trainer = wordPieceTrainer({
|
||||
vocabSize: 30522,
|
||||
specialTokens: ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]
|
||||
});
|
||||
let files = ["test", "train", "valid"].map(split => `data/wikitext-103-raw/wiki.${split}.raw`);
|
||||
bert_tokenizer.train(trainer, files);
|
||||
|
||||
let model_files = bert_tokenizer.getModel.save("data", "bert-wiki");
|
||||
let fromFile = promisify(WordPiece.fromFile);
|
||||
bert_tokenizer.setModel(await fromFile(model_files[0], {
|
||||
unkToken: "[UNK]"
|
||||
}));
|
||||
|
||||
bert_tokenizer.save("data/bert-wiki.json")
|
||||
// END bert_train_tokenizer
|
||||
});
|
||||
});
|
||||
|
@ -73,3 +73,59 @@ class TestPipeline:
|
||||
# START replace_pre_tokenizer
|
||||
tokenizer.pre_tokenizer = pre_tokenizer
|
||||
# END replace_pre_tokenizer
|
||||
# START setup_processor
|
||||
from tokenizers.processors import TemplateProcessing
|
||||
|
||||
tokenizer.post_processor = TemplateProcessing
|
||||
single="[CLS] $A [SEP]",
|
||||
pair="[CLS] $A [SEP] $B:1 [SEP]:1",
|
||||
special_tokens=[("[CLS]", 1), ("[SEP]", 2)],
|
||||
)
|
||||
# END setup_processor
|
||||
|
||||
def test_bert_example(self):
|
||||
# START bert_setup_tokenizer
|
||||
from tokenizers import Tokenizer
|
||||
from tokenizers.models import WordPiece
|
||||
|
||||
bert_tokenizer = Tokenizer(WordPiece())
|
||||
# END bert_setup_tokenizer
|
||||
# START bert_setup_normalizer
|
||||
from tokenizers import normalizers
|
||||
from tokenizers.normalizers import Lowercase, NFD, StripAccents
|
||||
|
||||
bert_tokenizer.normalizer = normalizers.Sequence([
|
||||
NFD(), Lowercase(), StripAccents()
|
||||
])
|
||||
# END bert_setup_normalizer
|
||||
# START bert_setup_pre_tokenizer
|
||||
from tokenizers.pre_tokenizers import Whitespace
|
||||
|
||||
bert_tokenizer.pre_tokenizer = Whitespace()
|
||||
# END bert_setup_pre_tokenizer
|
||||
# START bert_setup_processor
|
||||
from tokenizers.processors import TemplateProcessing
|
||||
|
||||
bert_tokenizer.post_processor = TemplateProcessing(
|
||||
single="[CLS] $A [SEP]",
|
||||
pair="[CLS] $A [SEP] $B:1 [SEP]:1",
|
||||
special_tokens=[
|
||||
("[CLS]", 1),
|
||||
("[SEP]", 2),
|
||||
]
|
||||
)
|
||||
# END bert_setup_processor
|
||||
# START bert_train_tokenizer
|
||||
from tokenizers.trainers import WordPieceTrainer
|
||||
|
||||
trainer = WordPieceTrainer(
|
||||
vocab_size=30522, special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]
|
||||
)
|
||||
files = [f"data/wikitext-103-raw/wiki.{split}.raw" for split in ["test", "train", "valid"]]
|
||||
bert_tokenizer.train(trainer, files)
|
||||
|
||||
model_files = bert_tokenizer.model.save("data", "bert-wiki")
|
||||
bert_tokenizer.model = WordPiece(*model_files, unk_token="[UNK]")
|
||||
|
||||
bert_tokenizer.save("data/bert-wiki.json")
|
||||
# END bert_train_tokenizer
|
||||
|
@ -270,22 +270,36 @@ Post-Processing
|
||||
----------------------------------------------------------------------------------------------------
|
||||
|
||||
Post-processing is the last step of the tokenization pipeline, to perform any additional
|
||||
transformation to the :class:`~tokenizers.Encoding` before it's returned, like adding potential
|
||||
transformation to the :entity:`Encoding` before it's returned, like adding potential
|
||||
special tokens.
|
||||
|
||||
As we saw in the quick tour, we can customize the post processor of a :class:`~tokenizers.Tokenizer`
|
||||
As we saw in the quick tour, we can customize the post processor of a :entity:`Tokenizer`
|
||||
by setting the corresponding attribute. For instance, here is how we can post-process to make the
|
||||
inputs suitable for the BERT model:
|
||||
|
||||
.. code-block:: python
|
||||
.. only:: python
|
||||
|
||||
from tokenizers.processors import TemplateProcessing
|
||||
.. literalinclude:: ../../bindings/python/tests/documentation/test_pipeline.py
|
||||
:language: python
|
||||
:start-after: START setup_processor
|
||||
:end-before: END setup_processor
|
||||
:dedent: 8
|
||||
|
||||
tokenizer.post_processor = TemplateProcessing
|
||||
single="[CLS] $A [SEP]",
|
||||
pair="[CLS] $A [SEP] $B:1 [SEP]:1",
|
||||
special_tokens=[("[CLS]", 1), ("[SEP]", 2)],
|
||||
)
|
||||
.. only:: rust
|
||||
|
||||
.. literalinclude:: ../../tokenizers/tests/documentation.rs
|
||||
:language: rust
|
||||
:start-after: START pipeline_setup_processor
|
||||
:end-before: END pipeline_setup_processor
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/pipeline.test.ts
|
||||
:language: javascript
|
||||
:start-after: START setup_processor
|
||||
:end-before: END setup_processor
|
||||
:dedent: 8
|
||||
|
||||
Note that contrarily to the pre-tokenizer or the normalizer, you don't need to retrain a tokenizer
|
||||
after changing its post-processor.
|
||||
@ -296,66 +310,136 @@ All together: a BERT tokenizer from scratch
|
||||
----------------------------------------------------------------------------------------------------
|
||||
|
||||
Let's put all those pieces together to build a BERT tokenizer. First, BERT relies on WordPiece, so
|
||||
we instantiate a new :class:`~tokenizers.Tokenizer` with this model:
|
||||
we instantiate a new :entity:`Tokenizer` with this model:
|
||||
|
||||
.. code-block:: python
|
||||
.. only:: python
|
||||
|
||||
from tokenizers import Tokenizer
|
||||
from tokenizers.models import WordPiece
|
||||
.. literalinclude:: ../../bindings/python/tests/documentation/test_pipeline.py
|
||||
:language: python
|
||||
:start-after: START bert_setup_tokenizer
|
||||
:end-before: END bert_setup_tokenizer
|
||||
:dedent: 8
|
||||
|
||||
bert_tokenizer = Tokenizer(WordPiece())
|
||||
.. only:: rust
|
||||
|
||||
.. literalinclude:: ../../tokenizers/tests/documentation.rs
|
||||
:language: rust
|
||||
:start-after: START bert_setup_tokenizer
|
||||
:end-before: END bert_setup_tokenizer
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/pipeline.test.ts
|
||||
:language: javascript
|
||||
:start-after: START bert_setup_tokenizer
|
||||
:end-before: END bert_setup_tokenizer
|
||||
:dedent: 8
|
||||
|
||||
Then we know that BERT preprocesses texts by removing accents and lowercasing. We also use a unicode
|
||||
normalizer:
|
||||
|
||||
.. code-block:: python
|
||||
.. only:: python
|
||||
|
||||
import tokenizers
|
||||
from tokenizers.normalizers import Lowercase, NFD, StripAccents
|
||||
.. literalinclude:: ../../bindings/python/tests/documentation/test_pipeline.py
|
||||
:language: python
|
||||
:start-after: START bert_setup_normalizer
|
||||
:end-before: END bert_setup_normalizer
|
||||
:dedent: 8
|
||||
|
||||
bert_tokenizer.normalizer = tokenizers.normalizers.Sequence([
|
||||
NFD(), Lowercase(), StripAccents()
|
||||
])
|
||||
.. only:: rust
|
||||
|
||||
.. literalinclude:: ../../tokenizers/tests/documentation.rs
|
||||
:language: rust
|
||||
:start-after: START bert_setup_normalizer
|
||||
:end-before: END bert_setup_normalizer
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/pipeline.test.ts
|
||||
:language: javascript
|
||||
:start-after: START bert_setup_normalizer
|
||||
:end-before: END bert_setup_normalizer
|
||||
:dedent: 8
|
||||
|
||||
The pre-tokenizer is just splitting on whitespace and punctuation:
|
||||
|
||||
.. code-block:: python
|
||||
.. only:: python
|
||||
|
||||
from tokenizers.pre_tokenizers import Whitespace
|
||||
.. literalinclude:: ../../bindings/python/tests/documentation/test_pipeline.py
|
||||
:language: python
|
||||
:start-after: START bert_setup_pre_tokenizer
|
||||
:end-before: END bert_setup_pre_tokenizer
|
||||
:dedent: 8
|
||||
|
||||
bert_tokenizer.pre_tokenizer = Whitespace()
|
||||
.. only:: rust
|
||||
|
||||
.. literalinclude:: ../../tokenizers/tests/documentation.rs
|
||||
:language: rust
|
||||
:start-after: START bert_setup_pre_tokenizer
|
||||
:end-before: END bert_setup_pre_tokenizer
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/pipeline.test.ts
|
||||
:language: javascript
|
||||
:start-after: START bert_setup_pre_tokenizer
|
||||
:end-before: END bert_setup_pre_tokenizer
|
||||
:dedent: 8
|
||||
|
||||
And the post-processing uses the template we saw in the previous section:
|
||||
|
||||
.. code-block:: python
|
||||
.. only:: python
|
||||
|
||||
from tokenizers.processors import TemplateProcessing
|
||||
.. literalinclude:: ../../bindings/python/tests/documentation/test_pipeline.py
|
||||
:language: python
|
||||
:start-after: START bert_setup_processor
|
||||
:end-before: END bert_setup_processor
|
||||
:dedent: 8
|
||||
|
||||
bert_tokenizer.post_processor = TemplateProcessing(
|
||||
single="[CLS] $A [SEP]",
|
||||
pair="[CLS] $A [SEP] $B:1 [SEP]:1",
|
||||
special_tokens=[
|
||||
("[CLS]", bert_tokenizer.token_to_id("[CLS]")),
|
||||
("[SEP]", bert_tokenizer.token_to_id("[SEP]"))
|
||||
],
|
||||
)
|
||||
.. only:: rust
|
||||
|
||||
.. literalinclude:: ../../tokenizers/tests/documentation.rs
|
||||
:language: rust
|
||||
:start-after: START bert_setup_processor
|
||||
:end-before: END bert_setup_processor
|
||||
:dedent: 4
|
||||
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/pipeline.test.ts
|
||||
:language: javascript
|
||||
:start-after: START bert_setup_processor
|
||||
:end-before: END bert_setup_processor
|
||||
:dedent: 8
|
||||
|
||||
We can use this tokenizer and train on it on wikitext like in the :doc:`quicktour`:
|
||||
|
||||
.. code-block:: python
|
||||
.. only:: python
|
||||
|
||||
from tokenizers.trainers import WordPieceTrainer
|
||||
.. literalinclude:: ../../bindings/python/tests/documentation/test_pipeline.py
|
||||
:language: python
|
||||
:start-after: START bert_train_tokenizer
|
||||
:end-before: END bert_train_tokenizer
|
||||
:dedent: 8
|
||||
|
||||
trainer = WordPieceTrainer(
|
||||
vocab_size=30522, special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]
|
||||
)
|
||||
files = [f"wikitext-103-raw/wiki.{split}.raw" for split in ["test", "train", "valid"]]
|
||||
bert_tokenizer.train(trainer, files)
|
||||
.. only:: rust
|
||||
|
||||
model_files = bert_tokenizer.model.save("pretrained", "bert-wiki")
|
||||
bert_tokenizer.model = WordPiece(*model_files, unk_token="[UNK]")
|
||||
.. literalinclude:: ../../tokenizers/tests/documentation.rs
|
||||
:language: rust
|
||||
:start-after: START bert_train_tokenizer
|
||||
:end-before: END bert_train_tokenizer
|
||||
:dedent: 4
|
||||
|
||||
bert_tokenizer.save("pretrained/bert-wiki.json")
|
||||
.. only:: node
|
||||
|
||||
.. literalinclude:: ../../bindings/node/examples/documentation/pipeline.test.ts
|
||||
:language: javascript
|
||||
:start-after: START bert_train_tokenizer
|
||||
:end-before: END bert_train_tokenizer
|
||||
:dedent: 8
|
||||
|
||||
|
||||
.. _decoding:
|
||||
|
@ -354,6 +354,96 @@ fn pipeline() -> tokenizers::Result<()> {
|
||||
// START pipeline_replace_pre_tokenizer
|
||||
tokenizer.with_pre_tokenizer(pre_tokenizer);
|
||||
// END pipeline_replace_pre_tokenizer
|
||||
// START pipeline_setup_processor
|
||||
use tokenizers::processors::template::TemplateProcessing;
|
||||
|
||||
tokenizer.with_post_processor(
|
||||
TemplateProcessing::builder()
|
||||
.try_single("[CLS] $A [SEP]")
|
||||
.unwrap()
|
||||
.try_pair("[CLS] $A [SEP] $B:1 [SEP]:1")
|
||||
.unwrap()
|
||||
.special_tokens(vec![("[CLS]", 1), ("[SEP]", 2)])
|
||||
.build()
|
||||
.unwrap(),
|
||||
);
|
||||
// END pipeline_setup_processor
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[ignore]
|
||||
fn pipeline_bert() -> tokenizers::Result<()> {
|
||||
// START bert_setup_tokenizer
|
||||
use tokenizers::models::wordpiece::WordPiece;
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
let mut bert_tokenizer = Tokenizer::new(WordPiece::default());
|
||||
// END bert_setup_tokenizer
|
||||
// START bert_setup_normalizer
|
||||
use tokenizers::normalizers::utils::Sequence as NormalizerSequence;
|
||||
use tokenizers::normalizers::{strip::StripAccents, unicode::NFD, utils::Lowercase};
|
||||
|
||||
bert_tokenizer.with_normalizer(NormalizerSequence::new(vec![
|
||||
NFD.into(),
|
||||
Lowercase.into(),
|
||||
StripAccents.into(),
|
||||
]));
|
||||
// END bert_setup_normalizer
|
||||
// START bert_setup_pre_tokenizer
|
||||
use tokenizers::pre_tokenizers::whitespace::Whitespace;
|
||||
|
||||
bert_tokenizer.with_pre_tokenizer(Whitespace::default());
|
||||
// END bert_setup_pre_tokenizer
|
||||
// START bert_setup_processor
|
||||
use tokenizers::processors::template::TemplateProcessing;
|
||||
|
||||
bert_tokenizer.with_post_processor(
|
||||
TemplateProcessing::builder()
|
||||
.try_single("[CLS] $A [SEP]")
|
||||
.unwrap()
|
||||
.try_pair("[CLS] $A [SEP] $B:1 [SEP]:1")
|
||||
.unwrap()
|
||||
.special_tokens(vec![("[CLS]", 1), ("[SEP]", 2)])
|
||||
.build()
|
||||
.unwrap(),
|
||||
);
|
||||
// END bert_setup_processor
|
||||
// START bert_train_tokenizer
|
||||
use std::path::Path;
|
||||
use tokenizers::models::{wordpiece::WordPieceTrainer, TrainerWrapper};
|
||||
use tokenizers::Model;
|
||||
|
||||
let trainer: TrainerWrapper = WordPieceTrainer::builder()
|
||||
.vocab_size(30_522)
|
||||
.special_tokens(vec![
|
||||
AddedToken::from("[UNK]", true),
|
||||
AddedToken::from("[CLS]", true),
|
||||
AddedToken::from("[SEP]", true),
|
||||
AddedToken::from("[PAD]", true),
|
||||
AddedToken::from("[MASK]", true),
|
||||
])
|
||||
.build()
|
||||
.into();
|
||||
let files = ["test", "train", "valid"]
|
||||
.iter()
|
||||
.map(|split| format!("data/wikitext-103-raw/wiki.{}.raw", split))
|
||||
.collect::<Vec<_>>();
|
||||
bert_tokenizer.train_and_replace(&trainer, files)?;
|
||||
|
||||
let model_files = bert_tokenizer
|
||||
.get_model()
|
||||
.save(&Path::new("data"), Some("bert-wiki"))?;
|
||||
bert_tokenizer.with_model(
|
||||
WordPiece::from_file(model_files[0].to_str().unwrap())
|
||||
.unk_token("[UNK]".to_string())
|
||||
.build()
|
||||
.unwrap(),
|
||||
);
|
||||
|
||||
bert_tokenizer.save("data/bert-wiki.json", false)?;
|
||||
// END bert_train_tokenizer
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
Reference in New Issue
Block a user