mirror of
https://github.com/mii443/tokenizers.git
synced 2025-08-24 00:59:19 +00:00
Python - Black auto formatting
This commit is contained in:
@ -3,8 +3,9 @@ import argparse
|
||||
from tqdm import tqdm
|
||||
|
||||
import logging
|
||||
logging.getLogger('transformers').disabled = True
|
||||
logging.getLogger('transformers.tokenization_utils').disabled = True
|
||||
|
||||
logging.getLogger("transformers").disabled = True
|
||||
logging.getLogger("transformers.tokenization_utils").disabled = True
|
||||
|
||||
from tokenizers import Tokenizer, pre_tokenizers, decoders
|
||||
from tokenizers.models import BPE, WordPiece
|
||||
@ -18,7 +19,7 @@ parser.add_argument("--type", default="gpt2", type=str, help="The type of tokeni
|
||||
parser.add_argument("--file", default=None, type=str, help="The file to encode")
|
||||
parser.add_argument("--vocab", default=None, type=str, required=True, help="The vocab file")
|
||||
parser.add_argument("--merges", default=None, type=str, help="The merges.txt file")
|
||||
parser.add_argument("--debug", action='store_true', help="Verbose output")
|
||||
parser.add_argument("--debug", action="store_true", help="Verbose output")
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.type == "gpt2" and args.merges is None:
|
||||
@ -26,7 +27,7 @@ if args.type == "gpt2" and args.merges is None:
|
||||
|
||||
if args.file is not None:
|
||||
with open(args.file, "r") as fp:
|
||||
text = [ line.strip() for line in fp ]
|
||||
text = [line.strip() for line in fp]
|
||||
else:
|
||||
text = """
|
||||
The Zen of Python, by Tim Peters
|
||||
@ -49,11 +50,13 @@ Although never is often better than *right* now.
|
||||
If the implementation is hard to explain, it's a bad idea.
|
||||
If the implementation is easy to explain, it may be a good idea.
|
||||
Namespaces are one honking great idea -- let's do more of those!
|
||||
""".split("\n")
|
||||
""".split(
|
||||
"\n"
|
||||
)
|
||||
|
||||
if args.type == "gpt2":
|
||||
print("Running GPT-2 tokenizer")
|
||||
tok_p = GPT2Tokenizer.from_pretrained('gpt2')
|
||||
tok_p = GPT2Tokenizer.from_pretrained("gpt2")
|
||||
|
||||
# Create a Tokenizer using BPE
|
||||
tok_r = Tokenizer(BPE.from_files(args.vocab, args.merges))
|
||||
@ -65,33 +68,30 @@ elif args.type == "bert":
|
||||
print("Running Bert tokenizer")
|
||||
tok_p = BertTokenizer.from_pretrained(args.vocab)
|
||||
|
||||
tok_r = Tokenizer(WordPiece.from_files(
|
||||
args.vocab,
|
||||
unk_token="[UNK]",
|
||||
max_input_chars_per_word=100)
|
||||
tok_r = Tokenizer(
|
||||
WordPiece.from_files(args.vocab, unk_token="[UNK]", max_input_chars_per_word=100)
|
||||
)
|
||||
tok_r.normalizer = BertNormalizer(
|
||||
clean_text=True,
|
||||
handle_chinese_chars=True,
|
||||
strip_accents=True,
|
||||
lowercase=True,
|
||||
clean_text=True, handle_chinese_chars=True, strip_accents=True, lowercase=True,
|
||||
)
|
||||
# tok_r.pre_tokenizer = pre_tokenizers.Whitespace()
|
||||
tok_r.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
|
||||
tok_r.decoder = decoders.WordPiece()
|
||||
tok_r.post_processor = BertProcessing(
|
||||
("[SEP]", tok_r.token_to_id("[SEP]")),
|
||||
("[CLS]", tok_r.token_to_id("[CLS]")),
|
||||
("[SEP]", tok_r.token_to_id("[SEP]")), ("[CLS]", tok_r.token_to_id("[CLS]")),
|
||||
)
|
||||
else:
|
||||
raise Exception(f"Unknown type {args.type}")
|
||||
|
||||
|
||||
def tokenize_r():
|
||||
return tok_r.encode_batch(text);
|
||||
return tok_r.encode_batch(text)
|
||||
|
||||
|
||||
def tokenize_p():
|
||||
return [tok_p.encode(sentence, add_special_tokens=True) for sentence in tqdm(text)]
|
||||
|
||||
|
||||
print(f"Tokenizing {len(text)} lines")
|
||||
|
||||
# Rust version
|
||||
@ -110,7 +110,7 @@ print(f"Transformer tokenizer took: {time_p} sec")
|
||||
|
||||
print(f"SpeedUp Ratio: {time_p / time_r}")
|
||||
|
||||
ids_r = [ sentence.ids for sentence in encoded_r ]
|
||||
ids_r = [sentence.ids for sentence in encoded_r]
|
||||
diff_ids = 0
|
||||
for i in range(0, len(encoded_r)):
|
||||
if encoded_r[i].ids != encoded_p[i]:
|
||||
@ -124,8 +124,8 @@ for i in range(0, len(encoded_r)):
|
||||
print("")
|
||||
print(f"Ids differences: {diff_ids}")
|
||||
|
||||
decoded_r = tok_r.decode_batch([ sentence.ids for sentence in encoded_r ], False)
|
||||
decoded_p = [ tok_p.decode(en) for en in encoded_p ]
|
||||
decoded_r = tok_r.decode_batch([sentence.ids for sentence in encoded_r], False)
|
||||
decoded_p = [tok_p.decode(en) for en in encoded_p]
|
||||
diff_decoded = 0
|
||||
for i in range(0, len(text)):
|
||||
if decoded_r[i] != decoded_p[i]:
|
||||
|
Reference in New Issue
Block a user