mirror of
https://github.com/mii443/tokenizers.git
synced 2025-08-22 16:25:30 +00:00
Python - Improve documentation for post-processors
This commit is contained in:
@ -10,13 +10,31 @@ class PostProcessor:
|
||||
def num_special_tokens_to_add(self, is_pair):
|
||||
"""
|
||||
Return the number of special tokens that would be added for single/pair sentences.
|
||||
:param is_pair: Boolean indicating if the input would be a single sentence or a pair
|
||||
:return:
|
||||
|
||||
Args:
|
||||
is_pair (:obj:`bool`):
|
||||
Whether the input would be a pair of sequences
|
||||
|
||||
Returns:
|
||||
:obj:`int`: The number of tokens to add
|
||||
"""
|
||||
pass
|
||||
def process(self, encoding, pair=None, add_special_tokens=True):
|
||||
"""
|
||||
Post-process the given encodings, generating the final one
|
||||
|
||||
Args:
|
||||
encoding (:class:`~tokenizers.Encoding`):
|
||||
The encoding for the first sequence
|
||||
|
||||
pair (:class:`~tokenizers.Encoding`, `optional`):
|
||||
The encoding for the pair sequence
|
||||
|
||||
add_special_tokens (:obj:`bool`):
|
||||
Whether to add the special tokens
|
||||
|
||||
Return:
|
||||
:class:`~tokenizers.Encoding`: The final encoding
|
||||
"""
|
||||
pass
|
||||
|
||||
@ -24,17 +42,16 @@ class BertProcessing(PostProcessor):
|
||||
"""
|
||||
This post-processor takes care of adding the special tokens needed by
|
||||
a Bert model:
|
||||
|
||||
- a SEP token
|
||||
- a CLS token
|
||||
|
||||
Args:
|
||||
sep: Tuple[str, int]:
|
||||
sep (:obj:`Tuple[str, int]`):
|
||||
A tuple with the string representation of the SEP token, and its id
|
||||
|
||||
cls: Tuple[str, int]:
|
||||
cls (:obj:`Tuple[str, int]`):
|
||||
A tuple with the string representation of the CLS token, and its id
|
||||
|
||||
Returns:
|
||||
PostProcessor
|
||||
"""
|
||||
|
||||
def __init__(self, sep, cls):
|
||||
@ -42,24 +59,43 @@ class BertProcessing(PostProcessor):
|
||||
def num_special_tokens_to_add(self, is_pair):
|
||||
"""
|
||||
Return the number of special tokens that would be added for single/pair sentences.
|
||||
:param is_pair: Boolean indicating if the input would be a single sentence or a pair
|
||||
:return:
|
||||
|
||||
Args:
|
||||
is_pair (:obj:`bool`):
|
||||
Whether the input would be a pair of sequences
|
||||
|
||||
Returns:
|
||||
:obj:`int`: The number of tokens to add
|
||||
"""
|
||||
pass
|
||||
def process(self, encoding, pair=None, add_special_tokens=True):
|
||||
"""
|
||||
Post-process the given encodings, generating the final one
|
||||
|
||||
Args:
|
||||
encoding (:class:`~tokenizers.Encoding`):
|
||||
The encoding for the first sequence
|
||||
|
||||
pair (:class:`~tokenizers.Encoding`, `optional`):
|
||||
The encoding for the pair sequence
|
||||
|
||||
add_special_tokens (:obj:`bool`):
|
||||
Whether to add the special tokens
|
||||
|
||||
Return:
|
||||
:class:`~tokenizers.Encoding`: The final encoding
|
||||
"""
|
||||
pass
|
||||
|
||||
class ByteLevel(PostProcessor):
|
||||
"""
|
||||
This post-processor takes care of trimming the offsets.
|
||||
|
||||
By default, the ByteLevel BPE might include whitespaces in the produced tokens. If you don't
|
||||
want the offsets to include these whitespaces, then this PostProcessor must be used.
|
||||
|
||||
Args:
|
||||
trim_offsets: bool:
|
||||
trim_offsets (:obj:`bool`):
|
||||
Whether to trim the whitespaces from the produced offsets.
|
||||
"""
|
||||
|
||||
@ -68,13 +104,31 @@ class ByteLevel(PostProcessor):
|
||||
def num_special_tokens_to_add(self, is_pair):
|
||||
"""
|
||||
Return the number of special tokens that would be added for single/pair sentences.
|
||||
:param is_pair: Boolean indicating if the input would be a single sentence or a pair
|
||||
:return:
|
||||
|
||||
Args:
|
||||
is_pair (:obj:`bool`):
|
||||
Whether the input would be a pair of sequences
|
||||
|
||||
Returns:
|
||||
:obj:`int`: The number of tokens to add
|
||||
"""
|
||||
pass
|
||||
def process(self, encoding, pair=None, add_special_tokens=True):
|
||||
"""
|
||||
Post-process the given encodings, generating the final one
|
||||
|
||||
Args:
|
||||
encoding (:class:`~tokenizers.Encoding`):
|
||||
The encoding for the first sequence
|
||||
|
||||
pair (:class:`~tokenizers.Encoding`, `optional`):
|
||||
The encoding for the pair sequence
|
||||
|
||||
add_special_tokens (:obj:`bool`):
|
||||
Whether to add the special tokens
|
||||
|
||||
Return:
|
||||
:class:`~tokenizers.Encoding`: The final encoding
|
||||
"""
|
||||
pass
|
||||
|
||||
@ -82,29 +136,28 @@ class RobertaProcessing(PostProcessor):
|
||||
"""
|
||||
This post-processor takes care of adding the special tokens needed by
|
||||
a Roberta model:
|
||||
|
||||
- a SEP token
|
||||
- a CLS token
|
||||
|
||||
It also takes care of trimming the offsets.
|
||||
By default, the ByteLevel BPE might include whitespaces in the produced tokens. If you don't
|
||||
want the offsets to include these whitespaces, then this PostProcessor should be initialized
|
||||
with `trim_offsets=True`
|
||||
with :obj:`trim_offsets=True`
|
||||
|
||||
Args:
|
||||
sep: Tuple[str, int]:
|
||||
sep (:obj:`Tuple[str, int]`):
|
||||
A tuple with the string representation of the SEP token, and its id
|
||||
|
||||
cls: Tuple[str, int]:
|
||||
cls (:obj:`Tuple[str, int]`):
|
||||
A tuple with the string representation of the CLS token, and its id
|
||||
|
||||
trim_offsets: bool:
|
||||
trim_offsets (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
||||
Whether to trim the whitespaces from the produced offsets.
|
||||
|
||||
add_prefix_space: bool:
|
||||
add_prefix_space (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
||||
Whether the add_prefix_space option was enabled during pre-tokenization. This
|
||||
is relevant because it defines the way the offsets are trimmed out.
|
||||
|
||||
Returns:
|
||||
PostProcessor
|
||||
"""
|
||||
|
||||
def __init__(self, sep, cls, trim_offsets=True, add_prefix_space=True):
|
||||
@ -112,13 +165,31 @@ class RobertaProcessing(PostProcessor):
|
||||
def num_special_tokens_to_add(self, is_pair):
|
||||
"""
|
||||
Return the number of special tokens that would be added for single/pair sentences.
|
||||
:param is_pair: Boolean indicating if the input would be a single sentence or a pair
|
||||
:return:
|
||||
|
||||
Args:
|
||||
is_pair (:obj:`bool`):
|
||||
Whether the input would be a pair of sequences
|
||||
|
||||
Returns:
|
||||
:obj:`int`: The number of tokens to add
|
||||
"""
|
||||
pass
|
||||
def process(self, encoding, pair=None, add_special_tokens=True):
|
||||
"""
|
||||
Post-process the given encodings, generating the final one
|
||||
|
||||
Args:
|
||||
encoding (:class:`~tokenizers.Encoding`):
|
||||
The encoding for the first sequence
|
||||
|
||||
pair (:class:`~tokenizers.Encoding`, `optional`):
|
||||
The encoding for the pair sequence
|
||||
|
||||
add_special_tokens (:obj:`bool`):
|
||||
Whether to add the special tokens
|
||||
|
||||
Return:
|
||||
:class:`~tokenizers.Encoding`: The final encoding
|
||||
"""
|
||||
pass
|
||||
|
||||
@ -127,35 +198,36 @@ class TemplateProcessing(PostProcessor):
|
||||
Provides a way to specify templates in order to add the special tokens to each
|
||||
input sequence as relevant.
|
||||
|
||||
Let's take `BERT` tokenizer as an example. It uses two special tokens, used to
|
||||
delimitate each sequence. `[CLS]` is always used at the beginning of the first
|
||||
sequence, and `[SEP]` is added at the end of both the first, and the pair
|
||||
Let's take :obj:`BERT` tokenizer as an example. It uses two special tokens, used to
|
||||
delimitate each sequence. :obj:`[CLS]` is always used at the beginning of the first
|
||||
sequence, and :obj:`[SEP]` is added at the end of both the first, and the pair
|
||||
sequences. The final result looks like this:
|
||||
- Single sequence: `[CLS] Hello there [SEP]`
|
||||
- Pair sequences: `[CLS] My name is Anthony [SEP] What is my name? [SEP]`
|
||||
With the type ids as following:
|
||||
```markdown
|
||||
|
||||
- Single sequence: :obj:`[CLS] Hello there [SEP]`
|
||||
- Pair sequences: :obj:`[CLS] My name is Anthony [SEP] What is my name? [SEP]`
|
||||
|
||||
With the type ids as following::
|
||||
|
||||
[CLS] ... [SEP] ... [SEP]
|
||||
0 0 0 1 1
|
||||
```
|
||||
|
||||
You can achieve such behavior using a TemplateProcessing:
|
||||
```
|
||||
You can achieve such behavior using a TemplateProcessing::
|
||||
|
||||
TemplateProcessing(
|
||||
single="[CLS] $0 [SEP]",
|
||||
pair="[CLS] $A [SEP] $B:1 [SEP]:1",
|
||||
special_tokens=[("[CLS]", 1), ("[SEP]", 0)],
|
||||
)
|
||||
```
|
||||
|
||||
In this example, each input sequence is identified using a `$` construct. This identifier
|
||||
In this example, each input sequence is identified using a ``$`` construct. This identifier
|
||||
lets us specify each input sequence, and the type_id to use. When nothing is specified,
|
||||
it uses the default values. Here are the different ways to specify it:
|
||||
- Specifying the sequence, with default `type_id == 0`: `$A` or `$B`
|
||||
- Specifying the `type_id` with default `sequence == A`: `$0`, `$1`, `$2`, ...
|
||||
- Specifying both: `$A:0`, `$B:1`, ...
|
||||
|
||||
The same construct is used for special tokens: `<identifier>(:<type_id>)?`.
|
||||
- Specifying the sequence, with default ``type_id == 0``: ``$A`` or ``$B``
|
||||
- Specifying the `type_id` with default ``sequence == A``: ``$0``, ``$1``, ``$2``, ...
|
||||
- Specifying both: ``$A:0``, ``$B:1``, ...
|
||||
|
||||
The same construct is used for special tokens: ``<identifier>(:<type_id>)?``.
|
||||
|
||||
**Warning**: You must ensure that you are giving the correct tokens/ids as these
|
||||
will be added to the Encoding without any further check. If the given ids correspond
|
||||
@ -163,26 +235,29 @@ class TemplateProcessing(PostProcessor):
|
||||
might lead to unexpected results.
|
||||
|
||||
Args:
|
||||
single: Template
|
||||
single (:obj:`Template`):
|
||||
The template used for single sequences
|
||||
|
||||
pair: Template:
|
||||
pair (:obj:`Template`):
|
||||
The template used when both sequences are specified
|
||||
|
||||
special_tokens: Tokens:
|
||||
special_tokens (:obj:`Tokens`):
|
||||
The list of special tokens used in each sequences
|
||||
|
||||
Template: Union[str, List[str]]:
|
||||
- If a `str` is provided, the whitespace is used as delimiter between tokens
|
||||
- If a `List[str]` is provided, a list of tokens
|
||||
Types:
|
||||
|
||||
Tokens: List[Union[Tuple[int, str], Tuple[str, int], dict]]:
|
||||
- A Tuple with both a token and its associated ID, in any order
|
||||
- A dict with the following keys:
|
||||
- "id": str => The special token id, as specified in the Template
|
||||
- "ids": List[int] => The associated IDs
|
||||
- "tokens": List[str] => The associated tokens
|
||||
The given dict expects the provided `ids` and `tokens` lists to have
|
||||
Template (:obj:`str` or :obj:`List`):
|
||||
- If a :obj:`str` is provided, the whitespace is used as delimiter between tokens
|
||||
- If a :obj:`List[str]` is provided, a list of tokens
|
||||
|
||||
Tokens (:obj:`List[Union[Tuple[int, str], Tuple[str, int], dict]]`):
|
||||
- A :obj:`Tuple` with both a token and its associated ID, in any order
|
||||
- A :obj:`dict` with the following keys:
|
||||
- "id": :obj:`str` => The special token id, as specified in the Template
|
||||
- "ids": :obj:`List[int]` => The associated IDs
|
||||
- "tokens": :obj:`List[str]` => The associated tokens
|
||||
|
||||
The given dict expects the provided :obj:`ids` and :obj:`tokens` lists to have
|
||||
the same length.
|
||||
"""
|
||||
|
||||
@ -191,12 +266,30 @@ class TemplateProcessing(PostProcessor):
|
||||
def num_special_tokens_to_add(self, is_pair):
|
||||
"""
|
||||
Return the number of special tokens that would be added for single/pair sentences.
|
||||
:param is_pair: Boolean indicating if the input would be a single sentence or a pair
|
||||
:return:
|
||||
|
||||
Args:
|
||||
is_pair (:obj:`bool`):
|
||||
Whether the input would be a pair of sequences
|
||||
|
||||
Returns:
|
||||
:obj:`int`: The number of tokens to add
|
||||
"""
|
||||
pass
|
||||
def process(self, encoding, pair=None, add_special_tokens=True):
|
||||
"""
|
||||
Post-process the given encodings, generating the final one
|
||||
|
||||
Args:
|
||||
encoding (:class:`~tokenizers.Encoding`):
|
||||
The encoding for the first sequence
|
||||
|
||||
pair (:class:`~tokenizers.Encoding`, `optional`):
|
||||
The encoding for the pair sequence
|
||||
|
||||
add_special_tokens (:obj:`bool`):
|
||||
Whether to add the special tokens
|
||||
|
||||
Return:
|
||||
:class:`~tokenizers.Encoding`: The final encoding
|
||||
"""
|
||||
pass
|
||||
|
@ -93,14 +93,32 @@ impl PyPostProcessor {
|
||||
}
|
||||
|
||||
/// Return the number of special tokens that would be added for single/pair sentences.
|
||||
/// :param is_pair: Boolean indicating if the input would be a single sentence or a pair
|
||||
/// :return:
|
||||
///
|
||||
/// Args:
|
||||
/// is_pair (:obj:`bool`):
|
||||
/// Whether the input would be a pair of sequences
|
||||
///
|
||||
/// Returns:
|
||||
/// :obj:`int`: The number of tokens to add
|
||||
#[text_signature = "(self, is_pair)"]
|
||||
fn num_special_tokens_to_add(&self, is_pair: bool) -> usize {
|
||||
self.processor.added_tokens(is_pair)
|
||||
}
|
||||
|
||||
/// Post-process the given encodings, generating the final one
|
||||
///
|
||||
/// Args:
|
||||
/// encoding (:class:`~tokenizers.Encoding`):
|
||||
/// The encoding for the first sequence
|
||||
///
|
||||
/// pair (:class:`~tokenizers.Encoding`, `optional`):
|
||||
/// The encoding for the pair sequence
|
||||
///
|
||||
/// add_special_tokens (:obj:`bool`):
|
||||
/// Whether to add the special tokens
|
||||
///
|
||||
/// Return:
|
||||
/// :class:`~tokenizers.Encoding`: The final encoding
|
||||
#[args(pair = "None", add_special_tokens = "true")]
|
||||
#[text_signature = "(self, encoding, pair=None, add_special_tokens=True)"]
|
||||
fn process(
|
||||
@ -121,17 +139,16 @@ impl PyPostProcessor {
|
||||
|
||||
/// This post-processor takes care of adding the special tokens needed by
|
||||
/// a Bert model:
|
||||
///
|
||||
/// - a SEP token
|
||||
/// - a CLS token
|
||||
///
|
||||
/// Args:
|
||||
/// sep: Tuple[str, int]:
|
||||
/// sep (:obj:`Tuple[str, int]`):
|
||||
/// A tuple with the string representation of the SEP token, and its id
|
||||
///
|
||||
/// cls: Tuple[str, int]:
|
||||
/// cls (:obj:`Tuple[str, int]`):
|
||||
/// A tuple with the string representation of the CLS token, and its id
|
||||
///
|
||||
/// Returns:
|
||||
/// PostProcessor
|
||||
#[pyclass(extends=PyPostProcessor, module = "tokenizers.processors", name=BertProcessing)]
|
||||
#[text_signature = "(self, sep, cls)"]
|
||||
pub struct PyBertProcessing {}
|
||||
@ -152,29 +169,28 @@ impl PyBertProcessing {
|
||||
|
||||
/// This post-processor takes care of adding the special tokens needed by
|
||||
/// a Roberta model:
|
||||
///
|
||||
/// - a SEP token
|
||||
/// - a CLS token
|
||||
///
|
||||
/// It also takes care of trimming the offsets.
|
||||
/// By default, the ByteLevel BPE might include whitespaces in the produced tokens. If you don't
|
||||
/// want the offsets to include these whitespaces, then this PostProcessor should be initialized
|
||||
/// with `trim_offsets=True`
|
||||
/// with :obj:`trim_offsets=True`
|
||||
///
|
||||
/// Args:
|
||||
/// sep: Tuple[str, int]:
|
||||
/// sep (:obj:`Tuple[str, int]`):
|
||||
/// A tuple with the string representation of the SEP token, and its id
|
||||
///
|
||||
/// cls: Tuple[str, int]:
|
||||
/// cls (:obj:`Tuple[str, int]`):
|
||||
/// A tuple with the string representation of the CLS token, and its id
|
||||
///
|
||||
/// trim_offsets: bool:
|
||||
/// trim_offsets (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
||||
/// Whether to trim the whitespaces from the produced offsets.
|
||||
///
|
||||
/// add_prefix_space: bool:
|
||||
/// add_prefix_space (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
||||
/// Whether the add_prefix_space option was enabled during pre-tokenization. This
|
||||
/// is relevant because it defines the way the offsets are trimmed out.
|
||||
///
|
||||
/// Returns:
|
||||
/// PostProcessor
|
||||
#[pyclass(extends=PyPostProcessor, module = "tokenizers.processors", name=RobertaProcessing)]
|
||||
#[text_signature = "(self, sep, cls, trim_offsets=True, add_prefix_space=True)"]
|
||||
pub struct PyRobertaProcessing {}
|
||||
@ -203,11 +219,12 @@ impl PyRobertaProcessing {
|
||||
}
|
||||
|
||||
/// This post-processor takes care of trimming the offsets.
|
||||
///
|
||||
/// By default, the ByteLevel BPE might include whitespaces in the produced tokens. If you don't
|
||||
/// want the offsets to include these whitespaces, then this PostProcessor must be used.
|
||||
///
|
||||
/// Args:
|
||||
/// trim_offsets: bool:
|
||||
/// trim_offsets (:obj:`bool`):
|
||||
/// Whether to trim the whitespaces from the produced offsets.
|
||||
#[pyclass(extends=PyPostProcessor, module = "tokenizers.processors", name=ByteLevel)]
|
||||
#[text_signature = "(self, trim_offsets=True)"]
|
||||
@ -215,19 +232,14 @@ pub struct PyByteLevel {}
|
||||
#[pymethods]
|
||||
impl PyByteLevel {
|
||||
#[new]
|
||||
#[args(kwargs = "**")]
|
||||
fn new(kwargs: Option<&PyDict>) -> PyResult<(Self, PyPostProcessor)> {
|
||||
#[args(trim_offsets = "None")]
|
||||
fn new(trim_offsets: Option<bool>) -> PyResult<(Self, PyPostProcessor)> {
|
||||
let mut byte_level = ByteLevel::default();
|
||||
|
||||
if let Some(kwargs) = kwargs {
|
||||
for (key, value) in kwargs {
|
||||
let key: &str = key.extract()?;
|
||||
match key {
|
||||
"trim_offsets" => byte_level = byte_level.trim_offsets(value.extract()?),
|
||||
_ => println!("Ignored unknown kwargs option {}", key),
|
||||
}
|
||||
}
|
||||
if let Some(to) = trim_offsets {
|
||||
byte_level = byte_level.trim_offsets(to);
|
||||
}
|
||||
|
||||
Ok((
|
||||
PyByteLevel {},
|
||||
PyPostProcessor::new(Arc::new(byte_level.into())),
|
||||
@ -305,35 +317,36 @@ impl FromPyObject<'_> for PyTemplate {
|
||||
/// Provides a way to specify templates in order to add the special tokens to each
|
||||
/// input sequence as relevant.
|
||||
///
|
||||
/// Let's take `BERT` tokenizer as an example. It uses two special tokens, used to
|
||||
/// delimitate each sequence. `[CLS]` is always used at the beginning of the first
|
||||
/// sequence, and `[SEP]` is added at the end of both the first, and the pair
|
||||
/// Let's take :obj:`BERT` tokenizer as an example. It uses two special tokens, used to
|
||||
/// delimitate each sequence. :obj:`[CLS]` is always used at the beginning of the first
|
||||
/// sequence, and :obj:`[SEP]` is added at the end of both the first, and the pair
|
||||
/// sequences. The final result looks like this:
|
||||
/// - Single sequence: `[CLS] Hello there [SEP]`
|
||||
/// - Pair sequences: `[CLS] My name is Anthony [SEP] What is my name? [SEP]`
|
||||
/// With the type ids as following:
|
||||
/// ```markdown
|
||||
///
|
||||
/// - Single sequence: :obj:`[CLS] Hello there [SEP]`
|
||||
/// - Pair sequences: :obj:`[CLS] My name is Anthony [SEP] What is my name? [SEP]`
|
||||
///
|
||||
/// With the type ids as following::
|
||||
///
|
||||
/// [CLS] ... [SEP] ... [SEP]
|
||||
/// 0 0 0 1 1
|
||||
/// ```
|
||||
///
|
||||
/// You can achieve such behavior using a TemplateProcessing:
|
||||
/// ```
|
||||
/// You can achieve such behavior using a TemplateProcessing::
|
||||
///
|
||||
/// TemplateProcessing(
|
||||
/// single="[CLS] $0 [SEP]",
|
||||
/// pair="[CLS] $A [SEP] $B:1 [SEP]:1",
|
||||
/// special_tokens=[("[CLS]", 1), ("[SEP]", 0)],
|
||||
/// )
|
||||
/// ```
|
||||
///
|
||||
/// In this example, each input sequence is identified using a `$` construct. This identifier
|
||||
/// In this example, each input sequence is identified using a ``$`` construct. This identifier
|
||||
/// lets us specify each input sequence, and the type_id to use. When nothing is specified,
|
||||
/// it uses the default values. Here are the different ways to specify it:
|
||||
/// - Specifying the sequence, with default `type_id == 0`: `$A` or `$B`
|
||||
/// - Specifying the `type_id` with default `sequence == A`: `$0`, `$1`, `$2`, ...
|
||||
/// - Specifying both: `$A:0`, `$B:1`, ...
|
||||
///
|
||||
/// The same construct is used for special tokens: `<identifier>(:<type_id>)?`.
|
||||
/// - Specifying the sequence, with default ``type_id == 0``: ``$A`` or ``$B``
|
||||
/// - Specifying the `type_id` with default ``sequence == A``: ``$0``, ``$1``, ``$2``, ...
|
||||
/// - Specifying both: ``$A:0``, ``$B:1``, ...
|
||||
///
|
||||
/// The same construct is used for special tokens: ``<identifier>(:<type_id>)?``.
|
||||
///
|
||||
/// **Warning**: You must ensure that you are giving the correct tokens/ids as these
|
||||
/// will be added to the Encoding without any further check. If the given ids correspond
|
||||
@ -341,26 +354,29 @@ impl FromPyObject<'_> for PyTemplate {
|
||||
/// might lead to unexpected results.
|
||||
///
|
||||
/// Args:
|
||||
/// single: Template
|
||||
/// single (:obj:`Template`):
|
||||
/// The template used for single sequences
|
||||
///
|
||||
/// pair: Template:
|
||||
/// pair (:obj:`Template`):
|
||||
/// The template used when both sequences are specified
|
||||
///
|
||||
/// special_tokens: Tokens:
|
||||
/// special_tokens (:obj:`Tokens`):
|
||||
/// The list of special tokens used in each sequences
|
||||
///
|
||||
/// Template: Union[str, List[str]]:
|
||||
/// - If a `str` is provided, the whitespace is used as delimiter between tokens
|
||||
/// - If a `List[str]` is provided, a list of tokens
|
||||
/// Types:
|
||||
///
|
||||
/// Tokens: List[Union[Tuple[int, str], Tuple[str, int], dict]]:
|
||||
/// - A Tuple with both a token and its associated ID, in any order
|
||||
/// - A dict with the following keys:
|
||||
/// - "id": str => The special token id, as specified in the Template
|
||||
/// - "ids": List[int] => The associated IDs
|
||||
/// - "tokens": List[str] => The associated tokens
|
||||
/// The given dict expects the provided `ids` and `tokens` lists to have
|
||||
/// Template (:obj:`str` or :obj:`List`):
|
||||
/// - If a :obj:`str` is provided, the whitespace is used as delimiter between tokens
|
||||
/// - If a :obj:`List[str]` is provided, a list of tokens
|
||||
///
|
||||
/// Tokens (:obj:`List[Union[Tuple[int, str], Tuple[str, int], dict]]`):
|
||||
/// - A :obj:`Tuple` with both a token and its associated ID, in any order
|
||||
/// - A :obj:`dict` with the following keys:
|
||||
/// - "id": :obj:`str` => The special token id, as specified in the Template
|
||||
/// - "ids": :obj:`List[int]` => The associated IDs
|
||||
/// - "tokens": :obj:`List[str]` => The associated tokens
|
||||
///
|
||||
/// The given dict expects the provided :obj:`ids` and :obj:`tokens` lists to have
|
||||
/// the same length.
|
||||
#[pyclass(extends=PyPostProcessor, module = "tokenizers.processors", name=TemplateProcessing)]
|
||||
#[text_signature = "(self, single, pair, special_tokens)"]
|
||||
|
Reference in New Issue
Block a user