mirror of
https://github.com/mii443/tokenizers.git
synced 2025-08-23 00:35:35 +00:00
Update README
This commit is contained in:
46
README.md
46
README.md
@ -25,11 +25,47 @@ versatility.
|
|||||||
original sentence that corresponds to a given token.
|
original sentence that corresponds to a given token.
|
||||||
- Does all the pre-processing: Truncate, Pad, add the special tokens your model needs.
|
- Does all the pre-processing: Truncate, Pad, add the special tokens your model needs.
|
||||||
|
|
||||||
<p align="center">
|
## Quick examples using Python:
|
||||||
<br>
|
|
||||||
<img src="https://huggingface.co/landing/assets/tokenizers/tokenizers-repo-example.png" />
|
Start using in a matter of seconds:
|
||||||
<br>
|
|
||||||
<p>
|
```python
|
||||||
|
# Tokenizers provides ultra-fast implementations of most current tokenizers:
|
||||||
|
from tokenizers import (ByteLevelBPETokenizer,
|
||||||
|
BPETokenizer,
|
||||||
|
SentencePieceBPETokenizer,
|
||||||
|
BertWordPieceTokenizer)
|
||||||
|
# Ultra-fast => they can encode 1GB of text in ~20sec on a standard server's CPU
|
||||||
|
# Tokenizers can be easily instantiated from standard files
|
||||||
|
tokenizer = BertWordPieceTokenizer("bert-base-uncased-vocab.txt", lowercase=True)
|
||||||
|
>>> Tokenizer(vocabulary_size=30522, model=BertWordPiece, add_special_tokens=True, unk_token=[UNK],
|
||||||
|
sep_token=[SEP], cls_token=[CLS], clean_text=True, handle_chinese_chars=True,
|
||||||
|
strip_accents=True, lowercase=True, wordpieces_prefix=##)
|
||||||
|
|
||||||
|
# Tokenizers provide exhaustive outputs: tokens, mapping to original string, attention/special token masks.
|
||||||
|
# They also handle model's max input lengths as well as padding (to directly encode in padded batches)
|
||||||
|
output = tokenizer.encode("Hello, y'all! How are you 😁 ?")
|
||||||
|
>>> Encoding(num_tokens=13, attributes=[ids, type_ids, tokens, offsets, attention_mask, special_tokens_mask, overflowing, original_str, normalized_str])
|
||||||
|
print(output.ids, output.tokens, output.offsets)
|
||||||
|
>>> [101, 7592, 1010, 1061, 1005, 2035, 999, 2129, 2024, 2017, 100, 1029, 102]
|
||||||
|
>>> ['[CLS]', 'hello', ',', 'y', "'", 'all', '!', 'how', 'are', 'you', '[UNK]', '?', '[SEP]']
|
||||||
|
>>> [(0, 0), (0, 5), (5, 6), (7, 8 (8, 9), (9, 12), (12, 13), (14, 17), (18, 21), (22, 25), (26, 27),
|
||||||
|
(28, 29), (0, 0)]
|
||||||
|
# Here is an example using the offsets mapping to retrieve the string coresponding to the 10th token:
|
||||||
|
output.original_str[output.offsets[10]]
|
||||||
|
>>> '😁'
|
||||||
|
```
|
||||||
|
|
||||||
|
And training an new vocabulary is just as easy:
|
||||||
|
|
||||||
|
```python
|
||||||
|
# You can also train a BPE/Byte-levelBPE/WordPiece vocabulary on your own files
|
||||||
|
tokenizer = ByteLevelBPETokenizer()
|
||||||
|
tokenizer.train(["wiki.test.raw"], vocab_size=20000)
|
||||||
|
>>> [00:00:00] Tokenize words ████████████████████████████████████████ 20993/20993
|
||||||
|
>>> [00:00:00] Count pairs ████████████████████████████████████████ 20993/20993
|
||||||
|
>>> [00:00:03] Compute merges ████████████████████████████████████████ 19375/19375
|
||||||
|
```
|
||||||
|
|
||||||
## Bindings
|
## Bindings
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user