Failing test for compatibility for SentencePieceUnigramTokenizer.

- We are failing on ambiguous tokenization (AAA -> A + AA vs AA + A).
  Could be linked to float precision and hard or impossible to fix
(should not hinder model performance)

- We are now fusing_unk by default as it's the case with spm_train

- We are still failing on at least space deduplication. Probably should
  be handlded by a pre-tokenizer.
This commit is contained in:
Nicolas Patry
2020-08-21 14:16:50 +02:00
parent c7a84c7cc6
commit 439305eea0
11 changed files with 314 additions and 8 deletions

View File

@ -0,0 +1,80 @@
import tokenizers
from argparse import ArgumentParser
import sentencepiece as spm
import json
def main():
parser = ArgumentParser("SentencePiece parity checker")
parser.add_argument(
"--input-file",
"-i",
type=str,
required=True,
help="Which files do you want to train from",
)
parser.add_argument(
"--model-prefix",
type=str,
default="spm_parity",
help="Model prefix for spm_train",
)
parser.add_argument(
"--vocab-size", "-v", type=int, default=8000, help="Vocab size for spm_train",
)
args = parser.parse_args()
spm.SentencePieceTrainer.Train(
f"--input={args.input_file} --model_prefix={args.model_prefix}"
f" --vocab_size={args.vocab_size}"
)
sp = spm.SentencePieceProcessor()
model_filename = f"{args.model_prefix}.model"
sp.Load(model_filename)
vocab_filename = f"{args.model_prefix}.json"
vocab = [(sp.id_to_piece(i), sp.get_score(i)) for i in range(sp.piece_size())]
data = {"unk_id": sp.unk_id(), "vocab": vocab}
with open(vocab_filename, "w") as f:
json.dump(data, f, indent=4)
tok = tokenizers.SentencePieceUnigramTokenizer(vocab_filename)
with open(args.input_file, "r") as f:
for i, line in enumerate(f):
line = line.strip()
ids = sp.EncodeAsIds(line)
encoded = tok.encode(line)
if ids != encoded.ids:
# Encoding can be the same with same result AAA -> A + AA vs AA + A
# We just check this does not cover unk tokens
if len(ids) != len(encoded.ids):
N = len(ids)
M = len(encoded.ids)
first_index_error = [
i for i in range(min(N, M)) if ids[i] != encoded.ids[i]
][0]
last_index_error = [
min(N, M) - i
for i in range(min(N, M))
if ids[-i - 1] != encoded.ids[-i - 1]
][0]
print(ids[first_index_error : last_index_error + 1])
print(encoded.ids[first_index_error : last_index_error + 1])
import ipdb
ipdb.set_trace()
assert len(ids) == len(encoded.ids)
continue
assert ids == encoded.ids, f"line {i}: {line} : {ids} != {encoded.ids}"
if __name__ == "__main__":
main()