mirror of
https://github.com/mii443/tokenizers.git
synced 2025-08-23 00:35:35 +00:00
Automatically stubbing the pyi
files while keeping inspecting ability (#509)
* First pass on automatic stubbing our python files. * And now modifying all rust docs to be visible in Pyi files. * Better assert fail message. * Fixing github workflow. * Removing types not exported anymore. * Fixing `Tokenizer` signature. * Disabling auto __init__.py. * Re-enabling some types. * Don't overwrite non automated __init__.py * Automated most __init__.py * Restubbing after rebase. * Fixing env for tests. * Install blakc in the env. * Use PY35 target in stub.py Co-authored-by: Anthony MOI <m.anthony.moi@gmail.com>
This commit is contained in:
@ -16,6 +16,10 @@ use tk::processors::PostProcessorWrapper;
|
||||
use tk::{Encoding, PostProcessor};
|
||||
use tokenizers as tk;
|
||||
|
||||
/// Base class for all post-processors
|
||||
///
|
||||
/// This class is not supposed to be instantiated directly. Instead, any implementation of
|
||||
/// a PostProcessor will return an instance of this class when instantiated.
|
||||
#[pyclass(dict, module = "tokenizers.processors", name=PostProcessor)]
|
||||
#[derive(Clone, Deserialize, Serialize)]
|
||||
pub struct PyPostProcessor {
|
||||
@ -88,11 +92,17 @@ impl PyPostProcessor {
|
||||
}
|
||||
}
|
||||
|
||||
/// Return the number of special tokens that would be added for single/pair sentences.
|
||||
/// :param is_pair: Boolean indicating if the input would be a single sentence or a pair
|
||||
/// :return:
|
||||
#[text_signature = "(self, is_pair)"]
|
||||
fn num_special_tokens_to_add(&self, is_pair: bool) -> usize {
|
||||
self.processor.added_tokens(is_pair)
|
||||
}
|
||||
|
||||
/// Post-process the given encodings, generating the final one
|
||||
#[args(pair = "None", add_special_tokens = "true")]
|
||||
#[text_signature = "(self, encoding, pair=None, add_special_tokens=True)"]
|
||||
fn process(
|
||||
&self,
|
||||
encoding: &PyEncoding,
|
||||
@ -109,7 +119,21 @@ impl PyPostProcessor {
|
||||
}
|
||||
}
|
||||
|
||||
/// This post-processor takes care of adding the special tokens needed by
|
||||
/// a Bert model:
|
||||
/// - a SEP token
|
||||
/// - a CLS token
|
||||
/// Args:
|
||||
/// sep: Tuple[str, int]:
|
||||
/// A tuple with the string representation of the SEP token, and its id
|
||||
///
|
||||
/// cls: Tuple[str, int]:
|
||||
/// A tuple with the string representation of the CLS token, and its id
|
||||
///
|
||||
/// Returns:
|
||||
/// PostProcessor
|
||||
#[pyclass(extends=PyPostProcessor, module = "tokenizers.processors", name=BertProcessing)]
|
||||
#[text_signature = "(self, sep, cls)"]
|
||||
pub struct PyBertProcessing {}
|
||||
#[pymethods]
|
||||
impl PyBertProcessing {
|
||||
@ -126,7 +150,33 @@ impl PyBertProcessing {
|
||||
}
|
||||
}
|
||||
|
||||
/// This post-processor takes care of adding the special tokens needed by
|
||||
/// a Roberta model:
|
||||
/// - a SEP token
|
||||
/// - a CLS token
|
||||
///
|
||||
/// It also takes care of trimming the offsets.
|
||||
/// By default, the ByteLevel BPE might include whitespaces in the produced tokens. If you don't
|
||||
/// want the offsets to include these whitespaces, then this PostProcessor should be initialized
|
||||
/// with `trim_offsets=True`
|
||||
/// Args:
|
||||
/// sep: Tuple[str, int]:
|
||||
/// A tuple with the string representation of the SEP token, and its id
|
||||
///
|
||||
/// cls: Tuple[str, int]:
|
||||
/// A tuple with the string representation of the CLS token, and its id
|
||||
///
|
||||
/// trim_offsets: bool:
|
||||
/// Whether to trim the whitespaces from the produced offsets.
|
||||
///
|
||||
/// add_prefix_space: bool:
|
||||
/// Whether the add_prefix_space option was enabled during pre-tokenization. This
|
||||
/// is relevant because it defines the way the offsets are trimmed out.
|
||||
///
|
||||
/// Returns:
|
||||
/// PostProcessor
|
||||
#[pyclass(extends=PyPostProcessor, module = "tokenizers.processors", name=RobertaProcessing)]
|
||||
#[text_signature = "(self, sep, cls, trim_offsets=True, add_prefix_space=True)"]
|
||||
pub struct PyRobertaProcessing {}
|
||||
#[pymethods]
|
||||
impl PyRobertaProcessing {
|
||||
@ -152,7 +202,15 @@ impl PyRobertaProcessing {
|
||||
}
|
||||
}
|
||||
|
||||
/// This post-processor takes care of trimming the offsets.
|
||||
/// By default, the ByteLevel BPE might include whitespaces in the produced tokens. If you don't
|
||||
/// want the offsets to include these whitespaces, then this PostProcessor must be used.
|
||||
///
|
||||
/// Args:
|
||||
/// trim_offsets: bool:
|
||||
/// Whether to trim the whitespaces from the produced offsets.
|
||||
#[pyclass(extends=PyPostProcessor, module = "tokenizers.processors", name=ByteLevel)]
|
||||
#[text_signature = "(self, trim_offsets=True)"]
|
||||
pub struct PyByteLevel {}
|
||||
#[pymethods]
|
||||
impl PyByteLevel {
|
||||
@ -244,7 +302,68 @@ impl FromPyObject<'_> for PyTemplate {
|
||||
}
|
||||
}
|
||||
|
||||
/// Provides a way to specify templates in order to add the special tokens to each
|
||||
/// input sequence as relevant.
|
||||
///
|
||||
/// Let's take `BERT` tokenizer as an example. It uses two special tokens, used to
|
||||
/// delimitate each sequence. `[CLS]` is always used at the beginning of the first
|
||||
/// sequence, and `[SEP]` is added at the end of both the first, and the pair
|
||||
/// sequences. The final result looks like this:
|
||||
/// - Single sequence: `[CLS] Hello there [SEP]`
|
||||
/// - Pair sequences: `[CLS] My name is Anthony [SEP] What is my name? [SEP]`
|
||||
/// With the type ids as following:
|
||||
/// ```markdown
|
||||
/// [CLS] ... [SEP] ... [SEP]
|
||||
/// 0 0 0 1 1
|
||||
/// ```
|
||||
///
|
||||
/// You can achieve such behavior using a TemplateProcessing:
|
||||
/// ```
|
||||
/// TemplateProcessing(
|
||||
/// single="[CLS] $0 [SEP]",
|
||||
/// pair="[CLS] $A [SEP] $B:1 [SEP]:1",
|
||||
/// special_tokens=[("[CLS]", 1), ("[SEP]", 0)],
|
||||
/// )
|
||||
/// ```
|
||||
///
|
||||
/// In this example, each input sequence is identified using a `$` construct. This identifier
|
||||
/// lets us specify each input sequence, and the type_id to use. When nothing is specified,
|
||||
/// it uses the default values. Here are the different ways to specify it:
|
||||
/// - Specifying the sequence, with default `type_id == 0`: `$A` or `$B`
|
||||
/// - Specifying the `type_id` with default `sequence == A`: `$0`, `$1`, `$2`, ...
|
||||
/// - Specifying both: `$A:0`, `$B:1`, ...
|
||||
///
|
||||
/// The same construct is used for special tokens: `<identifier>(:<type_id>)?`.
|
||||
///
|
||||
/// **Warning**: You must ensure that you are giving the correct tokens/ids as these
|
||||
/// will be added to the Encoding without any further check. If the given ids correspond
|
||||
/// to something totally different in a `Tokenizer` using this `PostProcessor`, it
|
||||
/// might lead to unexpected results.
|
||||
///
|
||||
/// Args:
|
||||
/// single: Template
|
||||
/// The template used for single sequences
|
||||
///
|
||||
/// pair: Template:
|
||||
/// The template used when both sequences are specified
|
||||
///
|
||||
/// special_tokens: Tokens:
|
||||
/// The list of special tokens used in each sequences
|
||||
///
|
||||
/// Template: Union[str, List[str]]:
|
||||
/// - If a `str` is provided, the whitespace is used as delimiter between tokens
|
||||
/// - If a `List[str]` is provided, a list of tokens
|
||||
///
|
||||
/// Tokens: List[Union[Tuple[int, str], Tuple[str, int], dict]]:
|
||||
/// - A Tuple with both a token and its associated ID, in any order
|
||||
/// - A dict with the following keys:
|
||||
/// - "id": str => The special token id, as specified in the Template
|
||||
/// - "ids": List[int] => The associated IDs
|
||||
/// - "tokens": List[str] => The associated tokens
|
||||
/// The given dict expects the provided `ids` and `tokens` lists to have
|
||||
/// the same length.
|
||||
#[pyclass(extends=PyPostProcessor, module = "tokenizers.processors", name=TemplateProcessing)]
|
||||
#[text_signature = "(self, single, pair, special_tokens)"]
|
||||
pub struct PyTemplateProcessing {}
|
||||
#[pymethods]
|
||||
impl PyTemplateProcessing {
|
||||
|
Reference in New Issue
Block a user