Python - Improve tests on Tokenizer

This commit is contained in:
Anthony MOI
2020-03-30 18:46:20 -04:00
parent 5ebe687753
commit 3264ffe235

View File

@@ -1,5 +1,10 @@
from ..utils import data_dir, roberta_files
from tokenizers import AddedToken, Tokenizer
from tokenizers.models import Model, BPE
from tokenizers.pre_tokenizers import ByteLevel
from tokenizers.processors import RobertaProcessing
from tokenizers.normalizers import Lowercase
class TestAddedToken:
@@ -61,3 +66,156 @@ class TestTokenizer:
assert tokenizer.pre_tokenizer is None
assert tokenizer.post_processor is None
assert tokenizer.decoder is None
def test_add_tokens(self):
tokenizer = Tokenizer(BPE.empty())
added = tokenizer.add_tokens(["my", "name", "is", "john"])
assert added == 4
added = tokenizer.add_tokens([AddedToken("the"), AddedToken("quick", rstrip=True)])
assert added == 2
def test_add_special_tokens(self):
tokenizer = Tokenizer(BPE.empty())
# Can add special tokens as `str`
added = tokenizer.add_special_tokens(["my", "name", "is", "john"])
assert added == 4
# Can add special tokens as `AddedToken`
added = tokenizer.add_special_tokens([AddedToken("the"), AddedToken("quick", rstrip=True)])
assert added == 2
def test_encode(self):
tokenizer = Tokenizer(BPE.empty())
tokenizer.add_tokens(["my", "name", "is", "john", "pair"])
# Can encode single sequence
output = tokenizer.encode("my name is john")
assert output.tokens == ["my", "name", "is", "john"]
assert type(output.ids) == list
assert type(output.type_ids) == list
assert type(output.offsets) == list
assert type(output.words) == list
assert type(output.special_tokens_mask) == list
assert type(output.attention_mask) == list
assert type(output.overflowing) == list
# Can encode a pair of sequences
output = tokenizer.encode("my name is john", "pair")
assert output.tokens == ["my", "name", "is", "john", "pair"]
# Can encode a batch with both a single sequence and a pair of sequences
output = tokenizer.encode_batch(["my name is john", ("my name is john", "pair")])
assert len(output) == 2
def test_encode_add_special_tokens(self, roberta_files):
tokenizer = Tokenizer(BPE.from_files(roberta_files["vocab"], roberta_files["merges"]))
tokenizer.add_special_tokens(["<s>", "</s>"])
tokenizer.pre_tokenizer = ByteLevel(add_prefix_space=True)
tokenizer.post_processor = RobertaProcessing(
("</s>", tokenizer.token_to_id("</s>")), ("<s>", tokenizer.token_to_id("<s>")),
)
# Can encode with special tokens
output_with_specials = tokenizer.encode("My name is John", add_special_tokens=True)
assert output_with_specials.tokens == ["<s>", "ĠMy", "Ġname", "Ġis", "ĠJohn", "</s>"]
# Can encode without special tokens
output_without_specials = tokenizer.encode("My name is John", add_special_tokens=False)
assert output_without_specials.tokens == ["ĠMy", "Ġname", "Ġis", "ĠJohn"]
def test_truncation(self):
tokenizer = Tokenizer(BPE.empty())
tokenizer.add_tokens(["my", "name", "is", "john", "pair"])
tokenizer.enable_truncation(2)
# Can truncate single sequences
output = tokenizer.encode("my name is john")
assert output.tokens == ["my", "name"]
# Can truncate pair sequences as well
output = tokenizer.encode("my name is john", "pair")
assert output.tokens == ["my", "pair"]
def test_padding(self):
tokenizer = Tokenizer(BPE.empty())
tokenizer.add_tokens(["my", "name", "is", "john", "pair"])
# By default it does nothing when encoding single sequence
tokenizer.enable_padding()
output = tokenizer.encode("my name")
assert output.tokens == ["my", "name"]
# Can pad to the longest in a batch
output = tokenizer.encode_batch(["my name", "my name is john"])
assert all([len(encoding) == 4 for encoding in output])
# Can pad to the specified max length otherwise
tokenizer.enable_padding(max_length=4)
output = tokenizer.encode("my name")
assert output.tokens == ["my", "name", "[PAD]", "[PAD]"]
output = tokenizer.encode("my name", "pair")
assert output.tokens == ["my", "name", "pair", "[PAD]"]
def test_decode(self):
tokenizer = Tokenizer(BPE.empty())
tokenizer.add_tokens(["my", "name", "is", "john", "pair"])
# Can decode single sequences
output = tokenizer.decode([0, 1, 2, 3])
assert output == "my name is john"
# Can decode batch
output = tokenizer.decode_batch([[0, 1, 2, 3], [4]])
assert output == ["my name is john", "pair"]
def test_get_vocab(self):
tokenizer = Tokenizer(BPE.empty())
tokenizer.add_tokens(["my", "name", "is", "john", "pair"])
# Can retrieve vocab with added tokens
vocab = tokenizer.get_vocab(with_added_tokens=True)
assert vocab == {"is": 2, "john": 3, "my": 0, "name": 1, "pair": 4}
# Can retrieve vocab without added tokens
vocab = tokenizer.get_vocab(with_added_tokens=False)
assert vocab == {}
def test_get_vocab_size(self):
tokenizer = Tokenizer(BPE.empty())
tokenizer.add_tokens(["my", "name", "is", "john", "pair"])
# Can retrieve vocab's size with added tokens
size = tokenizer.get_vocab_size(with_added_tokens=True)
assert size == 5
# Can retrieve vocab's size without added tokens
size = tokenizer.get_vocab_size(with_added_tokens=False)
assert size == 0
def test_normalize(self):
tokenizer = Tokenizer(BPE.empty())
tokenizer.add_tokens(["my", "name", "is", "john", "pair"])
tokenizer.normalizer = Lowercase()
output = tokenizer.normalize("My Name Is John")
assert output == "my name is john"
def test_post_process(self):
tokenizer = Tokenizer(BPE.empty())
tokenizer.add_tokens(["my", "name", "is", "john", "pair"])
tokenizer.enable_truncation(2)
tokenizer.enable_padding(max_length=4)
encoding = tokenizer.encode("my name is john")
pair_encoding = tokenizer.encode("pair")
# Can post process a single encoding
output = tokenizer.post_process(encoding)
assert output.tokens == ["my", "name", "[PAD]", "[PAD]"]
# Can post process a pair of encodings
output = tokenizer.post_process(encoding, pair_encoding)
assert output.tokens == ["my", "pair", "[PAD]", "[PAD]"]