Python - ByteLevel BPE training example file

cc @julien-c
This commit is contained in:
Anthony MOI
2020-01-02 18:39:31 -05:00
parent 0589deb6e2
commit 04cfeea2d5

View File

@ -0,0 +1,49 @@
import argparse
import glob
from tokenizers import Tokenizer, models, pre_tokenizers, decoders, trainers
parser = argparse.ArgumentParser()
parser.add_argument("--files",
default=None,
metavar="path",
type=str,
required=True,
help="The files to use as training; accept '**/*.txt' type of patterns \
if enclosed in quotes")
parser.add_argument("--out",
default="./",
type=str,
help="Path to the output directory, where the files will be saved")
parser.add_argument("--name",
default="bpe-bytelevel",
type=str,
help="The name of the output vocab files")
args = parser.parse_args()
files = glob.glob(args.files)
if not files:
print(f"File does not exist: {args.files}")
exit(1)
# Initialize an empty tokenizer
tokenizer = Tokenizer(models.BPE.empty())
# Customize pre-tokenization and decoding
tokenizer.with_pre_tokenizer(pre_tokenizers.ByteLevel.new(add_prefix_space=False))
tokenizer.with_decoder(decoders.ByteLevel.new())
# And then train
trainer = trainers.BpeTrainer.new(
vocab_size=50000,
min_frequency=2,
show_progress=True,
special_tokens=[ "<s>", "<pad>", "</s" ],
initial_alphabet=pre_tokenizers.ByteLevel.alphabet()
)
tokenizer.train(trainer, files)
# Save the files
tokenizer.model.save(args.out, args.name)