In order to use inclusive terminology, rename SSI 'slave' as
'peripheral', following the specification resolution:
https://www.oshwa.org/a-resolution-to-redefine-spi-signal-names/
Patch created mechanically using:
$ sed -i s/SSISlave/SSIPeripheral/ $(git grep -l SSISlave)
$ sed -i s/SSI_SLAVE/SSI_PERIPHERAL/ $(git grep -l SSI_SLAVE)
$ sed -i s/ssi-slave/ssi-peripheral/ $(git grep -l ssi-slave)
$ sed -i s/ssi_slave/ssi_peripheral/ $(git grep -l ssi_slave)
$ sed -i s/ssi_create_slave/ssi_create_peripheral/ \
$(git grep -l ssi_create_slave)
Then in VMStateDescription vmstate_ssi_peripheral we restored
the "SSISlave" migration stream name (to avoid breaking migration).
Finally the following files have been manually tweaked:
- hw/ssi/pl022.c
- hw/ssi/xilinx_spips.c
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-Id: <20201012124955.3409127-4-f4bug@amsat.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Aspeed patches :
* New device model for EMC1413/EMC1414 temperature sensors (I2C)
* New g220a-bmc Aspeed machine
* couple of Aspeed cleanups
# gpg: Signature made Thu 10 Dec 2020 11:58:10 GMT
# gpg: using RSA key A0F66548F04895EBFE6B0B6051A343C7CFFBECA1
# gpg: Good signature from "Cédric Le Goater <clg@kaod.org>" [undefined]
# gpg: WARNING: This key is not certified with a trusted signature!
# gpg: There is no indication that the signature belongs to the owner.
# Primary key fingerprint: A0F6 6548 F048 95EB FE6B 0B60 51A3 43C7 CFFB ECA1
* remotes/legoater/tags/pull-aspeed-20201210:
aspeed: g220a-bmc: Add an FRU
aspeed/smc: Add support for address lane disablement
ast2600: SRAM is 89KB
aspeed: Add support for the g220a-bmc board
hw/misc: add an EMC141{3,4} device model
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
For M-profile CPUs, the range from 0xe0000000 to 0xe00fffff is the
Private Peripheral Bus range, which includes all of the memory mapped
devices and registers that are part of the CPU itself, including the
NVIC, systick timer, and debug and trace components like the Data
Watchpoint and Trace unit (DWT). Within this large region, the range
0xe000e000 to 0xe000efff is the System Control Space (NVIC, system
registers, systick) and 0xe002e000 to 0exe002efff is its Non-secure
alias.
The architecture is clear that within the SCS unimplemented registers
should be RES0 for privileged accesses and generate BusFault for
unprivileged accesses, and we currently implement this.
It is less clear about how to handle accesses to unimplemented
regions of the wider PPB. Unprivileged accesses should definitely
cause BusFaults (R_DQQS), but the behaviour of privileged accesses is
not given as a general rule. However, the register definitions of
individual registers for components like the DWT all state that they
are RES0 if the relevant component is not implemented, so the
simplest way to provide that is to provide RAZ/WI for the whole range
for privileged accesses. (The v7M Arm ARM does say that reserved
registers should be UNK/SBZP.)
Expand the container MemoryRegion that the NVIC exposes so that
it covers the whole PPB space. This means:
* moving the address that the ARMV7M device maps it to down by
0xe000 bytes
* moving the off and the offsets within the container of all the
subregions forward by 0xe000 bytes
* adding a new default MemoryRegion that covers the whole container
at a lower priority than anything else and which provides the
RAZWI/BusFault behaviour
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20201119215617.29887-2-peter.maydell@linaro.org
If table size is changed between virt_acpi_build and
virt_acpi_build_update, the table size would not be updated to
UEFI, therefore, just align the size to 128kb, which is enough
and same with x86. It would warn if 64k is not enough and the
align size should be updated.
Signed-off-by: Yubo Miao <miaoyubo@huawei.com>
Signed-off-by: Jiahui Cen <cenjiahui@huawei.com>
Message-Id: <20201119014841.7298-7-cenjiahui@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
The resources of pxbs are obtained by crs_build and the resources
used by pxbs would be moved from the resources defined for host-bridge.
The resources for pxb are composed of following two parts:
1. The bar space of the pci-bridge/pcie-root-port behined it
2. The config space of devices behind it.
Signed-off-by: Yubo Miao <miaoyubo@huawei.com>
Signed-off-by: Jiahui Cen <cenjiahui@huawei.com>
Message-Id: <20201119014841.7298-6-cenjiahui@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
The nseries machines have a codepath that allows them to load a
secondary bootloader. This code wasn't checking that the
load_image_targphys() succeeded. Check the return value and report
the error to the user.
While we're in the vicinity, fix the comment style of the
comment documenting what this image load is doing.
Fixes: Coverity CID 1192904
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-id: 20201103114918.11807-1-peter.maydell@linaro.org
The MusicPal board code connects both of the IRQ outputs of the UART
to the same INTC qemu_irq. Connecting two qemu_irqs outputs directly
to the same input is not valid as it produces subtly wrong behaviour
(for instance if both the IRQ lines are high, and then one goes
low, the INTC input will see this as a high-to-low transition
even though the second IRQ line should still be holding it high).
This kind of wiring needs an explicitly created OR gate; add one.
Inspired-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-id: 20201107193403.436146-5-f4bug@amsat.org
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
omap2420_mpu_init() introduced in commit 827df9f3c5 ("Add basic
OMAP2 chip support") takes care of creating the 3 UARTs.
Then commit 58a26b477e ("Emulate a serial bluetooth HCI with H4+
extensions and attach to n8x0's UART") added n8x0_uart_setup()
which create the UART and connects it to an IRQ output,
overwritting the existing peripheral and its IRQ connection.
This is incorrect.
Fortunately we don't need to fix this, because commit 6da68df7f9
("hw/arm/nseries: Replace the bluetooth chardev with a "null"
chardev") removed the use of this peripheral. We can simply
remove the code.
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-id: 20201107193403.436146-4-f4bug@amsat.org
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Use the BIT_ULL() macro to ensure we use 64-bit arithmetic.
This fixes the following Coverity issue (OVERFLOW_BEFORE_WIDEN):
CID 1432363 (#1 of 1): Unintentional integer overflow:
overflow_before_widen:
Potentially overflowing expression 1 << scale with type int
(32 bits, signed) is evaluated using 32-bit arithmetic, and
then used in a context that expects an expression of type
hwaddr (64 bits, unsigned).
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Acked-by: Eric Auger <eric.auger@redhat.com>
Message-id: 20201030144617.1535064-1-philmd@redhat.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
ppc patch queue 2020-10-28
Here's the next pull request for ppc and spapr related patches, which
should be the last things for soft freeze. Includes:
* Numerous error handling cleanups from Greg Kurz
* Cleanups to cpu realization and hotplug handling from Greg Kurz
* A handful of other small fixes and cleanups
This does include a change to pc_dimm_plug() that isn't in my normal
areas of concern. That's there as a a prerequisite for ppc specific
changes, and has an ack from Igor.
# gpg: Signature made Tue 27 Oct 2020 14:13:21 GMT
# gpg: using RSA key 75F46586AE61A66CC44E87DC6C38CACA20D9B392
# gpg: Good signature from "David Gibson <david@gibson.dropbear.id.au>" [full]
# gpg: aka "David Gibson (Red Hat) <dgibson@redhat.com>" [full]
# gpg: aka "David Gibson (ozlabs.org) <dgibson@ozlabs.org>" [full]
# gpg: aka "David Gibson (kernel.org) <dwg@kernel.org>" [unknown]
# Primary key fingerprint: 75F4 6586 AE61 A66C C44E 87DC 6C38 CACA 20D9 B392
* remotes/dgibson/tags/ppc-for-5.2-20201028:
ppc/: fix some comment spelling errors
spapr: Improve spapr_reallocate_hpt() error reporting
target/ppc: Fix kvmppc_load_htab_chunk() error reporting
spapr: Use error_append_hint() in spapr_reallocate_hpt()
spapr: Simplify error handling in spapr_memory_plug()
spapr: Pass &error_abort when getting some PC DIMM properties
spapr: Use appropriate getter for PC_DIMM_SLOT_PROP
spapr: Use appropriate getter for PC_DIMM_ADDR_PROP
pc-dimm: Drop @errp argument of pc_dimm_plug()
spapr: Simplify spapr_cpu_core_realize() and spapr_cpu_core_unrealize()
spapr: Make spapr_cpu_core_unrealize() idempotent
spapr: Drop spapr_delete_vcpu() unused argument
spapr: Unrealize vCPUs with qdev_unrealize()
spapr: Fix leak of CPU machine specific data
spapr: Move spapr_create_nvdimm_dr_connectors() to core machine code
hw/net: move allocation to the heap due to very large stack frame
ppc/spapr: re-assert IRQs during event-scan if there are pending
spapr: Clarify why DR connectors aren't user creatable
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The BCM2835 CPRMAN is the clock manager of the SoC. It is composed of a
main oscillator, and several sub-components (PLLs, multiplexers, ...) to
generate the BCM2835 clock tree.
This commit adds a skeleton of the CPRMAN, with a dummy register
read/write implementation. It embeds the main oscillator (xosc) from
which all the clocks will be derived.
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Tested-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Luc Michel <luc@lmichel.fr>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The CPRMAN (clock controller) was mapped at the watchdog/power manager
address. It was also split into two unimplemented peripherals (CM and
A2W) but this is really the same one, as shown by this extract of the
Raspberry Pi 3 Linux device tree:
watchdog@7e100000 {
compatible = "brcm,bcm2835-pm\0brcm,bcm2835-pm-wdt";
[...]
reg = <0x7e100000 0x114 0x7e00a000 0x24>;
[...]
};
[...]
cprman@7e101000 {
compatible = "brcm,bcm2835-cprman";
[...]
reg = <0x7e101000 0x2000>;
[...]
};
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Luc Michel <luc@lmichel.fr>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Tested-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Similarly to the Pi A, the Pi Zero uses a BCM2835 SoC (ARMv6Z core).
The only difference between the revision 1.2 and 1.3 is the latter
exposes a CSI camera connector. As we do not implement the Unicam
peripheral, there is no point in exposing a camera connector :)
Therefore we choose to model the 1.2 revision.
Example booting the machine using content from [*]:
$ qemu-system-arm -M raspi0 -serial stdio \
-kernel raspberrypi/firmware/boot/kernel.img \
-dtb raspberrypi/firmware/boot/bcm2708-rpi-zero.dtb \
-append 'printk.time=0 earlycon=pl011,0x20201000 console=ttyAMA0'
[ 0.000000] Booting Linux on physical CPU 0x0
[ 0.000000] Linux version 4.19.118+ (dom@buildbot) (gcc version 4.9.3 (crosstool-NG crosstool-ng-1.22.0-88-g8460611)) #1311 Mon Apr 27 14:16:15 BST 2020
[ 0.000000] CPU: ARMv6-compatible processor [410fb767] revision 7 (ARMv7), cr=00c5387d
[ 0.000000] CPU: VIPT aliasing data cache, unknown instruction cache
[ 0.000000] OF: fdt: Machine model: Raspberry Pi Zero
...
[*] http://archive.raspberrypi.org/debian/pool/main/r/raspberrypi-firmware/raspberrypi-kernel_1.20200512-2_armhf.deb
Reviewed-by: Luc Michel <luc.michel@greensocs.com>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-id: 20201024170127.3592182-9-f4bug@amsat.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The Pi A is almost the first machine released.
It uses a BCM2835 SoC which includes a ARMv6Z core.
Example booting the machine using content from [*]
(we use the device tree from the B model):
$ qemu-system-arm -M raspi1ap -serial stdio \
-kernel raspberrypi/firmware/boot/kernel.img \
-dtb raspberrypi/firmware/boot/bcm2708-rpi-b-plus.dtb \
-append 'earlycon=pl011,0x20201000 console=ttyAMA0'
[ 0.000000] Booting Linux on physical CPU 0x0
[ 0.000000] Linux version 4.19.118+ (dom@buildbot) (gcc version 4.9.3 (crosstool-NG crosstool-ng-1.22.0-88-g8460611)) #1311 Mon Apr 27 14:16:15 BST 2020
[ 0.000000] CPU: ARMv6-compatible processor [410fb767] revision 7 (ARMv7), cr=00c5387d
[ 0.000000] CPU: VIPT aliasing data cache, unknown instruction cache
[ 0.000000] OF: fdt: Machine model: Raspberry Pi Model B+
...
[*] http://archive.raspberrypi.org/debian/pool/main/r/raspberrypi-firmware/raspberrypi-kernel_1.20200512-2_armhf.deb
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-id: 20201024170127.3592182-8-f4bug@amsat.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The realize() function is clearly composed of two parts,
each described by a comment:
void realize()
{
/* common peripherals from bcm2835 */
...
/* bcm2836 interrupt controller (and mailboxes, etc.) */
...
}
Split the two part, so we can reuse the common part with other
SoCs from this family.
Reviewed-by: Luc Michel <luc.michel@greensocs.com>
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-id: 20201024170127.3592182-6-f4bug@amsat.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Remove usage of TypeInfo::class_data. Instead fill the fields in
the corresponding class_init().
So far all children use the same values for almost all fields,
but we are going to add the BCM2711/BCM2838 SoC for the raspi4
machine which use different fields.
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-id: 20201024170127.3592182-3-f4bug@amsat.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The NPCM7xx chips have multiple GPIO controllers that are mostly
identical except for some minor differences like the reset values of
some registers. Each controller controls up to 32 pins.
Each individual pin is modeled as a pair of unnamed GPIOs -- one for
emitting the actual pin state, and one for driving the pin externally.
Like the nRF51 GPIO controller, a gpio level may be negative, which
means the pin is not driven, or floating.
Reviewed-by: Tyrone Ting <kfting@nuvoton.com>
Signed-off-by: Havard Skinnemoen <hskinnemoen@google.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The NPCM730 and NPCM750 chips have a single USB host port shared between
a USB 2.0 EHCI host controller and a USB 1.1 OHCI host controller. This
adds support for both of them.
Testing notes:
* With -device usb-kbd, qemu will automatically insert a full-speed
hub, and the keyboard becomes controlled by the OHCI controller.
* With -device usb-kbd,bus=usb-bus.0,port=1, the keyboard is directly
attached to the port without any hubs, and the device becomes
controlled by the EHCI controller since it's high speed capable.
* With -device usb-kbd,bus=usb-bus.0,port=1,usb_version=1, the
keyboard is directly attached to the port, but it only advertises
itself as full-speed capable, so it becomes controlled by the OHCI
controller.
In all cases, the keyboard device enumerates correctly.
Reviewed-by: Tyrone Ting <kfting@nuvoton.com>
Reviewed-by: Gerd Hoffmann <kraxel@redhat.com>
Signed-off-by: Havard Skinnemoen <hskinnemoen@google.com>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>