The M profile cpu_exec_interrupt handling is fairly simple
but does include an M profile specific oddity (disabling
interrupts for certain PC values). A/R profile handling
on the other hand is getting rapidly more complicated
with the support for EL2 and EL3. Split the M profile
code out into its own implementation of cpu_exec_interrupt
to keep these two things out of each others' way.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Message-id: 1414684132-23971-2-git-send-email-peter.maydell@linaro.org
Add support for handling PSCI calls in system emulation. Both version
0.1 and 0.2 of the PSCI spec are supported. Platforms can enable support
by setting the "psci-conduit" QOM property on the cpus to SMC or HVC
emulation and having a PSCI binding in their dtb.
Signed-off-by: Rob Herring <rob.herring@linaro.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1412865028-17725-7-git-send-email-peter.maydell@linaro.org
[PMM: made system reset/off PSCI functions power down the CPU so
we obey the PSCI API requirement never to return from them;
rearranged how the code is plumbed into the exception system,
so that we split "is this a valid call?" from "do the call"]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
At the moment we try to handle c15_cpar with the strategy of:
* emit generated code which makes assumptions about its value
* when the register value changes call tb_flush() to throw
away the now-invalid generated code
This works because XScale CPUs are always uniprocessor, but
it's confusing because it suggests that the same approach can
be taken for other registers. It also means we do a tb_flush()
on CPU reset, which makes multithreaded linux-user binaries
even more likely to fail than would otherwise be the case.
Replace it with a combination of TB flags for the access
checks done on cp0/cp1 for the XScale and iwMMXt instructions,
plus a runtime check for cp2..cp13 coprocessor accesses.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1411056959-23070-1-git-send-email-peter.maydell@linaro.org
This patch adds support for setting guest breakpoints
based on values the guest writes to the DBGBVR and DBGBCR
registers. (It doesn't include the code to handle when
these breakpoints fire, so has no guest-visible effect.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1410523465-13400-2-git-send-email-peter.maydell@linaro.org
Implement support for setting QEMU watchpoints based on the
values the guest writes to the ARM architected watchpoint
registers. (We do not yet report the firing of the watchpoints
to the guest, so they will just be ignored.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Commit 2c7ffc414 added support for honouring the CPACR coprocessor
access control register bits which may disable access to VFP
and Neon instructions. However it failed to account for the
fact that the CPACR is only present starting from the ARMv6
architecture version, so it accidentally disabled VFP completely
for ARMv5 CPUs like the ARM926. Linux would detect this as
"no VFP present" and probably fall back to its own emulation,
but other guest OSes might crash or misbehave.
This fixes bug LP:1359930.
Reported-by: Jakub Jermar <jakub@jermar.eu>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1408714940-7192-1-git-send-email-peter.maydell@linaro.org
Cc: qemu-stable@nongnu.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
ARMv8 single-stepping requires the exception level that controls
the single-stepping to be in AArch64 execution state, but the
code being stepped may be in AArch64 or AArch32. Implement the
necessary support code for single-stepping AArch32 code.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Implement ARMv8 software single-step handling for A64 code:
correctly update the single-step state machine and generate
debug exceptions when stepping A64 code.
This patch has no behavioural change since MDSCR_EL1.SS can't
be set by the guest yet.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Set the PSTATE.SS bit correctly on exception returns from AArch64,
as required by the debug single-step functionality.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
The CPSR has a new-in-v8 execution state bit (IL), and
also some state which has effects in AArch32 but appears
only in the SPSR format (SS) but is RES0 in the CPSR.
Add the IL bit to CPSR_EXEC, and enforce that guest direct
reads and writes to CPSR can't read or write the RES0
bits, so the guest can't get at the SS bit which we store
in uncached_cpsr. This includes not permitting exception
returns to copy reserved bits from an SPSR into CPSR.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Corrected handling of writes to TTBCR for ARMv8 (previously UNK/SBZP
bits are not RES0) and ARMv7 (new bits PD0/PD1 for CPUs with Security
Extensions).
Bits PD0/PD1 are now respected in get_phys_addr_v6/v5() and
get_level1_table_address.
Signed-off-by: Fabian Aggeler <aggelerf@ethz.ch>
Message-id: 1402409556-18574-1-git-send-email-aggelerf@ethz.ch
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Add support for the VMULL.P64 polynomial 64x64 to 128 bit multiplication
instruction in the A32/T32 instruction sets; this is part of the v8
Crypto Extensions.
To do this we have to move the neon_pmull_64_{lo,hi} helpers from
helper-a64.c into neon_helper.c so they can be used by the AArch32
translator.
Inspired-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1401386724-26529-4-git-send-email-peter.maydell@linaro.org
This adds support for the SHA1 and SHA256 instructions that are available
on some v8 implementations of Aarch32.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1401386724-26529-2-git-send-email-peter.maydell@linaro.org
[PMM:
* rebase
* fix bad indent
* add a missing UNDEF check for Q!=1 in the 3-reg SHA1/SHA256 case
* use g_assert_not_reached()
* don't re-extract bit 6 for the 2-reg-misc encodings
* set the ELF HWCAP2 bits for the new features
]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
These will soon require cpu_ldst.h, so move them out of cpu.h.
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The Cortex-A57, like most of the other ARM cores, has a CBAR
register which defines the base address of the per-CPU
peripherals. However it has a 64-bit view as well as a
32-bit view; expand the QOM reset-cbar property from UINT32
to UINT64 so this can be specified, and implement the
32-bit and 64-bit views of a 64-bit CBAR.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Implement AArch64 view of the CONTEXTIDR register.
We tighten up the condition when we flush the TLB on a CONTEXTIDR
write to avoid needlessly flushing the TLB every time on a 64
bit system (and also on a 32 bit system using LPAE, as a bonus).
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
For ARMv8 there are two changes to the MVFR media feature registers:
* there is a new MVFR2 which is accessible from 32 bit code
* 64 bit code accesses these via the usual sysreg instructions
rather than with a floating-point specific instruction
Implement this.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>