Add a CPU state exception target EL field that will be used for communicating
the EL to which an exception should be routed.
Add a disassembly context field for tracking the EL3 architecture needed for
determining the target exception EL.
Add a target EL argument to the generic exception helper for callers to specify
the EL to which the exception should be routed. Extended the helper to set
the newly added CPU state exception target el.
Added a function for setting the target exception EL and updated calls to helpers
to call it.
Signed-off-by: Greg Bellows <greg.bellows@linaro.org>
Acked-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Message-id: 1429722561-12651-2-git-send-email-greg.bellows@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
No code uses the cpu_pc_from_tb() function. Delete from tricore and
arm which each provide an unused implementation. Update the comment
in tcg.h to reflect that this is obsoleted by synchronize_from_tb.
Signed-off-by: Peter Crosthwaite <crosthwaite.peter@gmail.com>
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
These CP accessor function prototypes are unused. Remove them.
Signed-off-by: Peter Crosthwaite <crosthwaite.peter@gmail.com>
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
Rename the field holding CPACR_EL1 system register state in AArch64
naming style.
Signed-off-by: Sergey Fedorov <serge.fdrv@gmail.com>
[PMM: also fixed a couple of missed occurrences in cpu.c]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This patch implements a fucntion pointer "virtio_is_big_endian"
from "CPUClass" structure for arm/arm64.
Function arm_cpu_is_big_endian() is added to determine and
return the guest cpu endianness to virtio.
This is required for running cross endian guests with virtio on ARM/ARM64.
Signed-off-by: Pranavkumar Sawargaonkar <pranavkumar@linaro.org>
Message-id: 1423130382-18640-3-git-send-email-pranavkumar@linaro.org
[PMM: check CPSR_E in env->cpsr_uncached, not env->pstate.]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
target-arm doesn't use any of the MMU-mode specific cpu ldst
accessor functions. Suppress their generation by not defining
any of the MMU_MODE*_SUFFIX macros. ("user" and "kernel" are
too simplistic as descriptions of indexes 0 and 1 anyway.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Greg Bellows <greg.bellows@linaro.org>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
We currently claim that for ARM the mmu_idx should simply be the current
exception level. However this isn't actually correct -- secure EL0 and EL1
should have separate indexes from non-secure EL0 and EL1 since their
VA->PA mappings may differ. We also will want an index for stage 2
translations when we properly support EL2.
Define and document all seven mmu index values that we require, and
pass the mmu index in the TB flags rather than exception level or
priv/user bit.
This change doesn't update the get_phys_addr() code, so our page
table walking still assumes a simplistic "user or priv?" model for
the moment.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Greg Bellows <greg.bellows@linaro.org>
---
This leaves some odd gaps in the TB flags usage. I will circle
back and clean this up later (including moving the other common
flags like the singlestep ones to the top of the flags word),
but I didn't want to bloat this patchseries further.
Although M profile doesn't have the same concept of exception level
as A profile, it does have a notion of privileged versus not, which
we currently track in the privmode TB flag. Support returning this
information if arm_current_el() is called on an M profile core, so
that we can identify the correct MMU index to use (and put the MMU
index in the TB flags) without having to special-case M profile.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Greg Bellows <greg.bellows@linaro.org>
We currently mark ARM coprocessor/system register definitions with
the flag ARM_CP_NO_MIGRATE for two different reasons:
1) register is an alias on to state that's also visible via
some other register, and that other register is the one
responsible for migrating the state
2) register is not actually state at all (for instance the TLB
or cache maintenance operation "registers") and it makes no
sense to attempt to migrate it or otherwise access the raw state
This works fine for identifying which registers should be ignored
when performing migration, but we also use the same functions for
synchronizing system register state between QEMU and the kernel
when using KVM. In this case we don't want to try to sync state
into registers in category 2, but we do want to sync into registers
in category 1, because the kernel might have picked a different
one of the aliases as its choice for which one to expose for
migration. (In particular, on 32 bit hosts the kernel will
expose the state in the AArch32 version of the register, but
TCG's convention is to mark the AArch64 version as the version
to migrate, even if the CPU being emulated happens to be 32 bit,
so almost all system registers will hit this issue now that we've
added AArch64 system emulation.)
Fix this by splitting the NO_MIGRATE flag in two (ALIAS and NO_RAW)
corresponding to the two different reasons we might not want to
migrate a register. When setting up the TCG list of registers to
migrate we honour both flags; when populating the list from KVM,
only ignore registers which are NO_RAW.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Greg Bellows <greg.bellows@linaro.org>
Message-id: 1422282372-13735-2-git-send-email-peter.maydell@linaro.org
[PMM: changed ARM_CP_NO_MIGRATE to ARM_CP_ALIAS on new SP_EL1 and
SP_EL2 reginfo stanzas since there was a (semantic) merge conflict
with the patchset that added those]
The TARGET_HAS_ICE #define is intended to indicate whether a target-*
guest CPU implementation supports the breakpoint handling. However,
all our guest CPUs have that support (the only two which do not
define TARGET_HAS_ICE are unicore32 and openrisc, and in both those
cases the bp support is present and the lack of the #define is just
a bug). So remove the #define entirely: all new guest CPU support
should include breakpoint handling as part of the basic implementation.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Message-id: 1420484960-32365-1-git-send-email-peter.maydell@linaro.org
Adds secure and non-secure bank register suport for TTBR0 and TTBR1.
Changes include adding secure and non-secure instances of ttbr0 and ttbr1 as
well as a CP register definition for TTBR0_EL3. Added a union containing
both EL based array fields and secure and non-secure fields mapped to them.
Updated accesses to use A32_BANKED_CURRENT_REG_GET macro.
Signed-off-by: Fabian Aggeler <aggelerf@ethz.ch>
Signed-off-by: Greg Bellows <greg.bellows@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1416242878-876-17-git-send-email-greg.bellows@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Prepare ARMCPRegInfo to support specifying two fieldoffsets per
register definition. This will allow us to keep one register
definition for banked registers (different offsets for secure/
non-secure world).
Also added secure state tracking field and flags. This allows for
identification of the register info secure state.
Signed-off-by: Fabian Aggeler <aggelerf@ethz.ch>
Signed-off-by: Greg Bellows <greg.bellows@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1416242878-876-6-git-send-email-greg.bellows@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
If EL3 is in AArch32 state certain cp registers are banked (secure and
non-secure instance). When reading or writing to coprocessor registers
the following macros can be used.
- A32_BANKED macros are used for choosing the banked register based on provided
input security argument. This macro is used to choose the bank during
translation of MRC/MCR instructions that are dependent on something other
than the current secure state.
- A32_BANKED_CURRENT macros are used for choosing the banked register based on
current secure state. This is NOT to be used for choosing the bank used
during translation as it breaks monitor mode.
If EL3 is operating in AArch64 state coprocessor registers are not
banked anymore. The macros use the non-secure instance (_ns) in this
case, which is architecturally mapped to the AArch64 EL register.
Signed-off-by: Sergey Fedorov <s.fedorov@samsung.com>
Signed-off-by: Fabian Aggeler <aggelerf@ethz.ch>
Signed-off-by: Greg Bellows <greg.bellows@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1416242878-876-4-git-send-email-greg.bellows@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This patch extends arm_excp_unmasked() to use lookup tables for determining
whether IRQ and FIQ exceptions are masked. The lookup tables are based on the
ARMv8 and ARMv7 specification physical interrupt masking tables.
If EL3 is using AArch64 IRQ/FIQ masking is ignored in all exception levels
other than EL3 if SCR.{FIQ|IRQ} is set to 1 (routed to EL3).
Signed-off-by: Greg Bellows <greg.bellows@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1416242878-876-2-git-send-email-greg.bellows@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The M profile cpu_exec_interrupt handling is fairly simple
but does include an M profile specific oddity (disabling
interrupts for certain PC values). A/R profile handling
on the other hand is getting rapidly more complicated
with the support for EL2 and EL3. Split the M profile
code out into its own implementation of cpu_exec_interrupt
to keep these two things out of each others' way.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Message-id: 1414684132-23971-2-git-send-email-peter.maydell@linaro.org
Add support for handling PSCI calls in system emulation. Both version
0.1 and 0.2 of the PSCI spec are supported. Platforms can enable support
by setting the "psci-conduit" QOM property on the cpus to SMC or HVC
emulation and having a PSCI binding in their dtb.
Signed-off-by: Rob Herring <rob.herring@linaro.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1412865028-17725-7-git-send-email-peter.maydell@linaro.org
[PMM: made system reset/off PSCI functions power down the CPU so
we obey the PSCI API requirement never to return from them;
rearranged how the code is plumbed into the exception system,
so that we split "is this a valid call?" from "do the call"]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
At the moment we try to handle c15_cpar with the strategy of:
* emit generated code which makes assumptions about its value
* when the register value changes call tb_flush() to throw
away the now-invalid generated code
This works because XScale CPUs are always uniprocessor, but
it's confusing because it suggests that the same approach can
be taken for other registers. It also means we do a tb_flush()
on CPU reset, which makes multithreaded linux-user binaries
even more likely to fail than would otherwise be the case.
Replace it with a combination of TB flags for the access
checks done on cp0/cp1 for the XScale and iwMMXt instructions,
plus a runtime check for cp2..cp13 coprocessor accesses.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1411056959-23070-1-git-send-email-peter.maydell@linaro.org