When realising the SoC use error_fatal instead of error_abort as the
process can fail and report useful information to the user.
Currently a user can see this:
$ ../qemu/bld/qemu-system-riscv64 -M sifive_u -S -monitor stdio -display none -drive if=pflash
QEMU 6.1.93 monitor - type 'help' for more information
(qemu) Unexpected error in sifive_u_otp_realize() at ../hw/misc/sifive_u_otp.c:229:
qemu-system-riscv64: OTP drive size < 16K
Aborted (core dumped)
Which this patch addresses
Reported-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Tested-by: Bin Meng <bmeng.cn@gmail.com>
Message-Id: <20220105213937.1113508-8-alistair.francis@opensource.wdc.com>
Using memory_region_init_ram(), which can't possibly handle vhost-user,
and can't work as expected with '-numa node,memdev' options.
Use MachineState::ram instead of manually initializing RAM memory
region, as well as by providing MachineClass::default_ram_id to
opt in to memdev scheme.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Message-id: 20211020014112.7336-2-bmeng.cn@gmail.com
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
At present the Microchip Icicle Kit machine only supports using
'-bios' to load the HSS, and does not support '-kernel' for direct
kernel booting just like other RISC-V machines do. One has to use
U-Boot which is chain-loaded by HSS, to load a kernel for testing.
This is not so convenient.
Adding '-kernel' support together with the existing '-bios', we
follow the following table to select which payload we execute:
-bios | -kernel | payload
------+------------+--------
N | N | HSS
Y | don't care | HSS
N | Y | kernel
This ensures backwards compatibility with how we used to expose
'-bios' to users. When '-kernel' is used for direct boot, '-dtb'
must be present to provide a valid device tree for the board,
as we don't generate device tree.
When direct kernel boot is used, the OpenSBI fw_dynamic BIOS image
is used to boot a payload like U-Boot or OS kernel directly.
Documentation is updated to describe the direct kernel boot. Note
as of today there is still no PolarFire SoC support in the upstream
Linux kernel hence the document does not include instructions for
that. It will be updated in the future.
Signed-off-by: Bin Meng <bin.meng@windriver.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-id: 20210430071302.1489082-8-bmeng.cn@gmail.com
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
Since HSS commit c20a89f8dcac, the Icicle Kit reference design has
been updated to use a register mapped at 0x4f000000 instead of a
GPIO to control whether eMMC or SD card is to be used. With this
support the same HSS image can be used for both eMMC and SD card
boot flow, while previously two different board configurations were
used. This is undocumented but one can take a look at the HSS code
HSS_MMCInit() in services/mmc/mmc_api.c.
With this commit, HSS image built from 2020.12 release boots again.
Signed-off-by: Bin Meng <bin.meng@windriver.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-id: 20210322075248.136255-1-bmeng.cn@gmail.com
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
The latest SD card image [1] released by Microchip ships a Linux
kernel with built-in PolarFire SoC I2C driver support. The device
tree file includes the description for the I2C1 node hence kernel
tries to probe the I2C1 device during boot.
It is enough to create an unimplemented device for I2C1 to allow
the kernel to continue booting to the shell.
[1] ftp://ftpsoc.microsemi.com/outgoing/core-image-minimal-dev-icicle-kit-es-sd-20201009141623.rootfs.wic.gz
Signed-off-by: Bin Meng <bin.meng@windriver.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-id: 1603863010-15807-11-git-send-email-bmeng.cn@gmail.com
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
When system memory is larger than 1 GiB (high memory), PolarFire SoC
maps it at address 0x10_0000_0000. Address 0xC000_0000 and above is
aliased to the same 1 GiB low memory with different cache attributes.
At present QEMU maps the system memory contiguously from 0x8000_0000.
This corrects the wrong QEMU logic. Note address 0x14_0000_0000 is
the alias to the high memory, and even physical memory is only 1 GiB,
the HSS codes still tries to probe the high memory alias address.
It seems there is no issue on the real hardware, so we will have to
take that into the consideration in our emulation. Due to this, we
we increase the default system memory size to 1537 MiB (the minimum
required high memory size by HSS) so that user gets notified an error
when less than 1537 MiB is specified.
Signed-off-by: Bin Meng <bin.meng@windriver.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-id: 20201101170538.3732-1-bmeng.cn@gmail.com
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
At present the CLINT timestamp is using a hard-coded timebase
frequency value SIFIVE_CLINT_TIMEBASE_FREQ. This might not be
true for all boards.
Add a new 'timebase-freq' property to the CLINT device, and
update various functions to accept this as a parameter.
Signed-off-by: Bin Meng <bin.meng@windriver.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <1598924352-89526-16-git-send-email-bmeng.cn@gmail.com>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
Microchip PolarFire SoC integrates 3 GPIOs controllers. It seems
enough to create unimplemented devices to cover their register
spaces at this point.
With this commit, QEMU can boot to U-Boot (2nd stage bootloader)
all the way to the Linux shell login prompt, with a modified HSS
(1st stage bootloader).
For detailed instructions on how to create images for the Icicle
Kit board, please check QEMU RISC-V WiKi page at:
https://wiki.qemu.org/Documentation/Platforms/RISCV
Signed-off-by: Bin Meng <bin.meng@windriver.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-Id: <1598924352-89526-15-git-send-email-bmeng.cn@gmail.com>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
Microchip PolarFire SoC integrates 2 Candence GEMs to provide
IEEE 802.3 standard-compliant 10/100/1000 Mbps ethernet interface.
On the Icicle Kit board, GEM0 connects to a PHY at address 8 while
GEM1 connects to a PHY at address 9.
The 2nd stage bootloader (U-Boot) is using GEM1 by default, so we
must specify 2 '-nic' options from the command line in order to get
a working ethernet.
Signed-off-by: Bin Meng <bin.meng@windriver.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-Id: <1598924352-89526-14-git-send-email-bmeng.cn@gmail.com>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
Microchip PolarFire SoC integrates one Cadence SDHCI controller.
On the Icicle Kit board, one eMMC chip and an external SD card
connect to this controller depending on different configuration.
As QEMU does not support eMMC yet, we just emulate the SD card
configuration. To test this, the Hart Software Services (HSS)
should choose the SD card configuration:
$ cp boards/icicle-kit-es/def_config.sdcard .config
$ make BOARD=icicle-kit-es
The SD card image can be built from the Yocto BSP at:
https://github.com/polarfire-soc/meta-polarfire-soc-yocto-bsp
Note the generated SD card image should be resized before use:
$ qemu-img resize /path/to/sdcard.img 4G
Launch QEMU with the following command:
$ qemu-system-riscv64 -nographic -M microchip-icicle-kit -sd sdcard.img
Signed-off-by: Bin Meng <bin.meng@windriver.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <1598924352-89526-9-git-send-email-bmeng.cn@gmail.com>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
This is an initial support for Microchip PolarFire SoC Icicle Kit.
The Icicle Kit board integrates a PolarFire SoC, with one SiFive's
E51 plus four U54 cores and many on-chip peripherals and an FPGA.
For more details about Microchip PolarFire Soc, please see:
https://www.microsemi.com/product-directory/soc-fpgas/5498-polarfire-soc-fpga
Unlike SiFive FU540, the RISC-V core resect vector is at 0x20220000.
The following perepherals are created as an unimplemented device:
- Bus Error Uint 0/1/2/3/4
- L2 cache controller
- SYSREG
- MPUCFG
- IOSCBCFG
More devices will be added later.
The BIOS image used by this machine is hss.bin, aka Hart Software
Services, which can be built from:
https://github.com/polarfire-soc/hart-software-services
To launch this machine:
$ qemu-system-riscv64 -nographic -M microchip-icicle-kit
The memory is set to 1 GiB by default to match the hardware.
A sanity check on ram size is performed in the machine init routine
to prompt user to increase the RAM size to > 1 GiB when less than
1 GiB ram is detected.
Signed-off-by: Bin Meng <bin.meng@windriver.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <1598924352-89526-5-git-send-email-bmeng.cn@gmail.com>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>