There is no "version 2" of the "Lesser" General Public License.
It is either "GPL version 2.0" or "Lesser GPL version 2.1".
This patch replaces all occurrences of "Lesser GPL version 2" with
"Lesser GPL version 2.1" in comment section.
Signed-off-by: Chetan Pant <chetan4windows@gmail.com>
Message-Id: <20201023122913.19561-1-chetan4windows@gmail.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Thomas Huth <thuth@redhat.com>
In the Neon instructions, some instruction formats have a 2-bit size
field which corresponds exactly to QEMU's MO_8/16/32/64. However the
floating-point insns in the 3-same group have a 1-bit size field
which is "0 for 32-bit float and 1 for 16-bit float". Currently we
pass these values directly through to trans_ functions, which means
that when reading a particular trans_ function you need to know if
that insn uses a 2-bit size or a 1-bit size.
Move the handling of the 1-bit size to the decodetree file, so that
all these insns consistently pass a size to the trans_ function which
is an MO_8/16/32/64 value.
In this commit we switch over the insns using the 3same_fp and
3same_fp_q0 formats.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200903133209.5141-2-peter.maydell@linaro.org
Convert the Neon VTRN insn to decodetree. This is the last insn in the
Neon data-processing group, so we can remove all the now-unused old
decoder framework.
It's possible that there's a more efficient implementation of
VTRN, but for this conversion we just copy the existing approach.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200616170844.13318-21-peter.maydell@linaro.org
Convert the Neon VSWP insn to decodetree. Since the new implementation
doesn't have to share a pass-loop with the other 2-reg-misc operations
we can implement the swap with 64-bit accesses rather than 32-bits
(which brings us into line with the pseudocode and is more efficient).
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200616170844.13318-20-peter.maydell@linaro.org
Convert the Neon 2-reg-misc VRINT insns to decodetree.
Giving these insns their own do_vrint() function allows us
to change the rounding mode just once at the start and end
rather than doing it for every element in the vector.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200616170844.13318-18-peter.maydell@linaro.org
Convert the pairwise ops VPADDL and VPADAL in the 2-reg-misc grouping
to decodetree.
At this point we can get rid of the weird CPU_V001 #define that was
used to avoid having to explicitly list all the arguments being
passed to some TCG gen/helper functions.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200616170844.13318-3-peter.maydell@linaro.org
Convert the Neon VDUP (scalar) insn to decodetree. (Note that we
can't call this just "VDUP" as we used that already in vfp.decode for
the "VDUP (general purpose register" insn.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Convert the Neon VTBL, VTBX instructions to decodetree. The actual
implementation of the insn is copied across to the new trans function
unchanged except for renaming 'tmp5' to 'tmp4'.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Convert the Neon VEXT insn to decodetree. Rather than keeping the
old implementation which used fixed temporaries cpu_V0 and cpu_V1
and did the extraction with by-hand shift and logic ops, we use
the TCG extract2 insn.
We don't need to special case 0 or 8 immediates any more as the
optimizer is smart enough to throw away the dead code.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Convert the Neon 2-reg-scalar long multiplies to decodetree.
These are the last instructions in the group.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Convert the float versions of VMLA, VMLS and VMUL in the Neon
2-reg-scalar group to decodetree.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
---
As noted in the comment on the WRAP_FP_FN macro, we could have
had a do_2scalar_fp() function, but for 3 insns it seemed
simpler to just do the wrapping to get hold of the fpstatus ptr.
(These are the only fp insns in the group.)
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Convert the VMLA, VMLS and VMUL insns in the Neon "2 registers and a
scalar" group to decodetree. These are 32x32->32 operations where
one of the inputs is the scalar, followed by a possible accumulate
operation of the 32-bit result.
The refactoring removes some of the oddities of the old decoder:
* operands to the operation and accumulation were often
reversed (taking advantage of the fact that most of these ops
are commutative); the new code follows the pseudocode order
* the Q bit in the insn was in a local variable 'u'; in the
new code it is decoded into a->q
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Convert the Neon 3-reg-diff insn polynomial VMULL. This is the last
insn in this group to be converted.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Convert the Neon 3-reg-diff insns VQDMULL, VQDMLAL and VQDMLSL:
these are all saturating doubling long multiplies with a possible
accumulate step.
These are the last insns in the group which use the pass-over-each
elements loop, so we can delete that code.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Convert the Neon 3-reg-diff insns VMULL, VMLAL and VMLSL; these perform
a 32x32->64 multiply with possible accumulate.
Note that for VMLSL we do the accumulate directly with a subtraction
rather than doing a negate-then-add as the old code did.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Convert the Neon 3-reg-diff insns VABAL and VABDL to decodetree.
Like almost all the remaining insns in this group, these are
a combination of a two-input operation which returns a double width
result and then a possible accumulation of that double width
result into the destination.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Convert the narrow-to-high-half insns VADDHN, VSUBHN, VRADDHN,
VRSUBHN in the Neon 3-registers-different-lengths group to
decodetree.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Convert the "pre-widening" insns VADDL, VSUBL, VADDW and VSUBW
in the Neon 3-registers-different-lengths group to decodetree.
These insns work by widening one or both inputs to double their
size, performing an add or subtract at the doubled size and
then storing the double-size result.
As usual, rather than copying the loop of the original decoder
(which needs awkward code to avoid problems when source and
destination registers overlap) we just unroll the two passes.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Convert the insns in the one-register-and-immediate group to decodetree.
In the new decode, our asimd_imm_const() function returns a 64-bit value
rather than a 32-bit one, which means we don't need to treat cmode=14 op=1
as a special case in the decoder (it is the only encoding where the two
halves of the 64-bit value are different).
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200522145520.6778-10-peter.maydell@linaro.org